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Executive Summary 

This project examined biomass pathways for hydrogen production and how they can be 
hybridized to support renewable electricity generation. The project considered many potential 
hybrid systems before narrowing the focus to two. The systems were studied in detail for process 
feasibility and economic performance. The best-performing system was estimated to produce 
hydrogen at a cost ($1.67/kg) within range of the Department of Energy target for central 
biomass-derived hydrogen production, while also providing value-added energy services to the 
electric grid. 

Of the domestic resources available for hydrogen production, biomass shows significant 
promise. Recent assessments have shown that more than 400 million tons of biomass currently is 
available annually in the United States (Milbrandt 2005). This could be converted to roughly 
30 million tons of hydrogen by thermochemical processing. Thermochemical plants provide 
many opportunities for system integration. 

The project team generated a matrix considering the combination of biomass-processing 
technologies and how they could be hybridized with other technologies. The matrix contained 
more than 100 potential binary combinations. These were ranked based on criteria such as 
resource availability, technology maturity, and hybridization benefits. Some of the top concepts 
are listed below. 

Combined wind power and biomass gasification for co-production of fuel and power 

Combined electrolysis and biomass gasification for co-production of fuel and power 

Combined coal and biomass/bio-oil gasification systems for co-production of fuel and power 
with carbon sequestration for both processes 

Co-location and thermal integration using steam from a nuclear reactor to feed bio-oil 
reforming to produce fuel 

These results were further ranked using a decision matrix. Direct wind and wind-electrolyzer 
combinations with biomass gasification rose to the top of the decision matrix due to several 
factors. These selections provide renewable fuel and power, supplement grid demand, and also 
can take up excess electricity. The two concepts chosen for further analysis in this project can be 
summarized as follows. 

Direct grid leveling of intermittent wind power with an indirectly heated biomass gasification 
plant. The plant will produce both electricity and hydrogen. 

Using an electrolyzer in place of an air separation unit (ASU) with a directly heated 
fluidized-bed biomass gasifier for co-production of fuel and power. 

Both of the concepts chosen for further analysis share the basic idea of combining wind-
generated electricity with a biomass gasification plant. Wind availability significantly overlaps 
biomass resource availability, making the use of locally produced wind electricity for 
gasification feasible. The proposed hybrid systems attempt to do one of two things:
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Fill wind energy shortfalls and feed a natural gas turbine that would be used for this peaking 
purpose; or 

Absorb excess renewable power during low-demand hours.  

The indirect gasification concepts studied could be cost competitive in the near future as value is 
placed on controlling carbon emissions. Carbon values of $34 to $40 per metric ton of carbon 
dioxide equivalent emission (CO2e) make the systems studied cost competitive with steam 
methane reforming (SMR) to produce hydrogen. A non-hybrid biomass-to-hydrogen plant is 
more cost competitive in general, however, so there must be some additional value placed on 
peaking or sinking for these plants to make sense. 

The direct gasification concept studied is unlikely to be cost competitive in the near future. High 
electrolyzer costs make the hybridization difficult to justify. Based on a direct replacement of the 
ASU with electrolyzers, hydrogen can be produced for a $0.19 premium per kilogram. 
Additionally, if a nonrenewable grid mix is used, then the hybrid system is a net CO2e emitter. 

The study results and the baseline values used for comparison are summarized in the table below. 
A range of values is given for systems where multiple configurations and locations were studied. 
Cost numbers reflect current electric grid prices and demand. In the future, additional value 
could be placed on grid-leveling services. 

Cost of Hydrogen ($/kg) 
Steam methane reforming baseline 1.40 
Indirectly heated biomass gasification to hydrogen baseline 1.64 
Directly heated biomass gasification to hydrogen baseline 2.13 
Electrolysis baseline 2.59 
Indirect hybrid system for peaking electricity 1.81–1.88 
Indirect hybrid system for sinking electricity 1.67–1.77 
Direct hybrid electrolysis system 2.32 

 
This project was reviewed by a number of biomass and power industry experts. General 
feedback was positive, and the team was encouraged to expand the study to include pathways 
such as hybrid coal gasification with sequestration. This analysis could be extended into other 
fuels (e.g., dimethyl ether, Fischer-Tropsch fuels), as well as to coal gasification. More-detailed 
process modeling to cover dynamic response and controls systems also would solidify the 
analysis. The systems listed above do not require significant technology breakthroughs and could 
be cost competitive in the near term. 

  



 

v 

Table of Contents 

Acknowledgments ........................................................................................................ ix 
List of Acronyms ........................................................................................................... x 
Introduction ................................................................................................................... 1 
Analysis Methodology .................................................................................................. 1 
Initial Brainstorming ..................................................................................................... 2 
Literature Review Findings .......................................................................................... 3 

Concentrated Solar—Biomass ...................................................................................................4 
Integrated Gasification Combined Cycle ...................................................................................7 
Fuel Cell—Biomass ...................................................................................................................7 
Electrolysis—Biomass ...............................................................................................................7 
Wastewater Treatment—Biomass .............................................................................................8 
Coal—Biomass ..........................................................................................................................9 
Nuclear—Biomass .....................................................................................................................9 
Wind—Biomass .......................................................................................................................11 
Industrial Hybridization ...........................................................................................................14 

Concept Down Selection ............................................................................................ 14 
Indirect Gasifier Hybrid System ................................................................................. 17 

Peaking Modifications .............................................................................................................19 
Plant Design .............................................................................................................................20 
Modeling ..................................................................................................................................23 
Alternative Design Scenario ....................................................................................................25 
Capital Costs ............................................................................................................................26 
Sinking Modifications ..............................................................................................................27 
Plant Design .............................................................................................................................28 
Modeling ..................................................................................................................................31 
Capital Costs ............................................................................................................................32 

Direct Gasifier Hybrid System .................................................................................... 32 
Plant Design .............................................................................................................................35 
Modeling ..................................................................................................................................35 
Capital Costs ............................................................................................................................36 

Economic Model .......................................................................................................... 37 
Results ......................................................................................................................... 41 

Indirect Hybrid System—Peaking ...........................................................................................41 
Indirect Hybrid System—Sinking ............................................................................................44 
Direct Gasifier Hybrid System.................................................................................................47 

Conclusion ................................................................................................................... 50 
Future Work ................................................................................................................. 51 
References ................................................................................................................... 53 
Appendix A. Numerical Idea Matrix ........................................................................... 57 
Appendix B. Indirect Gasifier Aspen Plus Simulation Details ................................. 58 

GE 6FA Simple Cycle Gas Turbine .........................................................................................58 
GE F-Class Simple-Cycle Gas Turbine ...................................................................................59 
Water-gas Shift Shutdown .......................................................................................................61 

Appendix C. Aspen Plus Gas Turbine Model Details ............................................... 62 



 

vi 

Appendix D. Electric Heater Capital Costs ............................................................... 64 
Appendix E. Direct Gasifier Baseline Capital Costs ................................................. 66 
Appendix F. Direct Gasifier Hybrid System Capital Costs ...................................... 67 
Appendix G. Electricity Profiles ................................................................................. 68 

Northeast ISO ...........................................................................................................................68 
Midwest ISO ............................................................................................................................68 
Northwest Interface ..................................................................................................................69 

Appendix H. Aspen Flow Sheet ................................................................................. 70 
 
 



 

vii 

List of Figures 

Figure 1. Idea matrix results ........................................................................................................... 3 
Figure 2. Biomass resources availability ........................................................................................ 4 
Figure 3. Parabolic (near) and tower (background) solar concentrators ......................................... 4 
Figure 4. Solar tower plant locations versus biomass resources ..................................................... 6 
Figure 5. Nuclear plant locations versus biomass resources ......................................................... 10 
Figure 6. Wind resource availability map (U.S. DOE 2009) ........................................................ 12 
Figure 7. Wind resources versus woody biomass resources ......................................................... 13 
Figure 8. Wind resources versus agricultural biomass resources ................................................. 14 
Figure 9. Decision matrix ............................................................................................................. 15 
Figure 10. Wind generation versus demand for a one-week period ............................................. 17 
Figure 11. Indirect hybrid block diagram ..................................................................................... 18 
Figure 12. Indirect gasifier diagram .............................................................................................. 18 
Figure 13. Concept 1 feed and product selection .......................................................................... 19 
Figure 14. Proposed peaking hybrid process ................................................................................ 20 
Figure 15. Tar reformer catalyst regenerator flows ...................................................................... 22 
Figure 16. Syngas stream split ...................................................................................................... 23 
Figure 17. Indirect gasifier product flow versus temperature (2,000 TPD) .................................. 28 
Figure 18. Updated indirect gasifier diagram ............................................................................... 29 
Figure 19. Collar heater, air duct heater, and air duct heater picture (Watlow 2009) .................. 30 
Figure 20. Final indirect gasifier sinking modifications ............................................................... 30 
Figure 21. Direct hybrid system block diagram ............................................................................ 33 
Figure 22. Direct gasifier biomass-to-hydrogen plant .................................................................. 34 
Figure 23. Direct gasifier hybrid concept ..................................................................................... 35 
Figure 24. Regional price duration curves .................................................................................... 38 
Figure 25. Time diagram of electricity cost .................................................................................. 39 
Figure 26. Gas-turbine peaking sensitivity analysis, Northeast ISO ............................................ 43 
Figure 27. Integrated combined-cycle peaking sensitivity analysis, Northeast ISO .................... 44 
Figure 28. Air heater sinking sensitivity analysis, Northwest Interface ....................................... 46 
Figure 29. All-electric sinking sensitivity analysis, Northwest Interface ..................................... 47 
Figure 30. Directly heated gasifier baseline sensitivity analysis .................................................. 49 
Figure 31. Directly heated gasifier hybrid system sensitivity analysis ......................................... 50 
Figure B.1. Syngas stream 326 split ............................................................................................. 58 
Figure B.2. Gas turbine inputs and outputs .................................................................................. 59 
Figure B.3. Syngas stream 326 split ............................................................................................. 60 
Figure B.4. Gas turbine inputs and outputs .................................................................................. 60 
Figure B.5. Syngas stream 326 split ............................................................................................. 61 
Figure C.1. Simple gas turbine flow sheet .................................................................................... 62 
Figure C.2. Natural gas turbine flow sheet ................................................................................... 63 
Figure G.1. Northeast ISO price duration curve ........................................................................... 68 
Figure G.2. Midwest ISO price duration curve ............................................................................. 68 
Figure G.3. Northwest Interface price duration curve .................................................................. 69 
 



 

viii 

List of Tables 

Table 1. Turbine Feed-Stream Possibilities .................................................................................. 21 
Table 2. GE Turbine Specifications .............................................................................................. 24 
Table 3. Baseline Peaking Plant Inputs and Outputs .................................................................... 25 
Table 4. Peaking Plant Input/Output Combined Cycle ................................................................. 26 
Table 5. Capital Cost of Gas Turbines .......................................................................................... 27 
Table 6. Capital Cost of Steam Turbines ...................................................................................... 27 
Table 7. Concept 1 Peaking Capital Costs .................................................................................... 27 
Table 8. Sinking Plant Input and Output with Electric Heaters Only ........................................... 31 
Table 9. Sinking Plant Input and Output with All Electric Heat .................................................. 31 
Table 10. Final Sinking Input and Output for Air Heaters Only .................................................. 32 
Table 11. Final Sinking Input and Output for All Electric ........................................................... 32 
Table 12. Direct Gasifier Hybrid Operating Requirements and Costs ......................................... 36 
Table 13. Direct Gasifier Capital Costs ........................................................................................ 36 
Table 14. Economic Assumptions ................................................................................................ 40 
Table 15. CO2e Emissions per Kilogram of Hydrogen Produced ................................................ 40 
Table 16. Electricity Greenhouse Emissions by Region ............................................................... 41 
Table 17. Indirect Hybrid System—Peaking H2A Inputs ............................................................ 41 
Table 18. Indirect Hybrid System—Peaking Results ................................................................... 42 
Table 19. Indirect Hybrid System—Sinking H2A Inputs ............................................................. 44 
Table 20. Indirect Hybrid System—Sinking Results .................................................................... 45 
Table 21. Direct Hybrid System—H2A Inputs ............................................................................. 47 
Table B.1. Plant Power Generation ............................................................................................... 59 
Table B.2. Plant Power Generation ............................................................................................... 60 
Table B.3. Plant Power Generation ............................................................................................... 61 
Table C.1. GE Gas Turbine Specifications ................................................................................... 62 
Table C.2. Aspen Plus Natural Gas Model Specifications ........................................................... 63 
Table D.1. Cost Estimate .............................................................................................................. 64 
Table D.2. Cost Estimate .............................................................................................................. 65 
 



 

ix 

Acknowledgments 

Special thanks are due to several individuals for their input and guidance. Ching-Jen Tang’s 
input and quick responses regarding GE’s gas and steam turbine products were essential and are 
greatly appreciated. Paul Denholm provided a much-needed crash course in electricity market 
operations and market price information throughout the project. Donna Heimiller’s GIS work 
helped to quickly identify potential markets for analysis. 

Additionally, several industry representatives reviewed this report and provided feedback. Their 
input and comments have been worked into this report—making it immeasurably better. Also, 
the authors extend a sincere “thank you” to Frank Novachek (Xcel Energy), Bryan Olthof (the 
Harris Group), Dr. Rakesh Radhakrishnan (Navigant Consulting Inc.), Lori Smith Schell 
(Empowered Energy), and Ching-Jen Tang (GE Global Research). 

 



 

x 

List of Acronyms 

 
ACESA  American Clean Energy and Security Act 
AEO  Annual Energy Outlook 
ASU  air separation unit 
BCL  Battelle Columbus 
BIGCC  biomass integrated gasification 

combined cycle 
CAES  compressed air energy storage 
CNG  compressed natural gas 
CO2e  carbon dioxide equivalent emission 
DOE  U.S. Department of Energy 
EIA  Energy Information Administration 
GHE  greenhouse emissions 
GHG  greenhouse gas 
GIS  geographic information system 
GTI  Gas Technology Institute 
HTS  high-temperature shift reactor 
H2A  Hydrogen Analysis Tool 
ICC  integrated combined cycle 
IGCC  integrated gasification combined cycle 
ISO  independent transmission system operator 
LTS  low-temperature shift reactor 
MCFC  molten carbonate fuel cell 
MYPP  multi-year program plan 
NG  natural gas 
NOx  nitrogen oxide 
NREL  National Renewable Energy Laboratory 
PEM  proton exchange membrane 
POx  partial oxidation 
PSA  pressure swing adsorption 
PV  photovoltaic 
RTO  regional transmission organization 
SC  simple cycle 
SMR  steam methane reformer 
SOFC  solid oxide fuel cell 
SOx  sulfer oxide 
TPD   tons per day 
U.S.  United States (adjective) 
WGS   water-gas shift 
ZnO  zinc oxide 



 

1 

Introduction 

Hydrogen can be produced domestically from a wide variety of resources, including biomass, 
wind, solar, natural gas, and coal. In support of the U.S. Department of Energy’s (DOE) program 
to develop hydrogen-production technologies for hydrogen fuel cell vehicles, this project 
investigates hybrid hydrogen production systems. 

Of the domestic resources available for hydrogen production, biomass shows significant 
promise. Recent assessments show more than 400 million tons of biomass available per year in 
the United States (Milbrandt 2005). This could be converted to roughly 30 million tons of 
hydrogen by thermochemical processing. Some estimates predict that, with relatively minor 
changes to land management and agricultural practices, as much as 1 billion tons of biomass 
could be available in the future (Perlack et al. 2005). In addition to great availability, 
thermochemical biomass plants provide many opportunities for system integration. 

The objective of this project is to evaluate the possibility of utilizing biomass’ renewable and 
dispatchable characteristics in combination with other energy technologies to improve the 
efficiency, reliability, or cost of producing electricity and hydrogen from renewable energy 
sources. This project addresses the definition and evaluation of opportunities for combined 
production of hydrogen and electric power by combining biomass conversion with other 
hydrogen-production technologies, including wind, solar, coal, and nuclear. The National 
Renewable Energy Laboratory (NREL) worked with DOE to develop a list of hybridization 
possibilities and to perform screening of the options to identify systems that could increase the 
efficiency, reliability, and cost of hydrogen production, or improve the sustainability of hydrogen 
production from nonrenewable resources. 

Analysis Methodology 

Due to the open nature of the project objective, analysis was performed in consecutively refining 
steps. Initially, brainstorming and literature review were used to narrow the scope of research. 
Then researchers performed a detailed techno-economic analysis on a subset of concepts. The 
screening was conducted in three main stages. First, a list of possible power technologies (both 
renewable and nonrenewable) was generated and used for brainstorming. The results of the 
initial brainstorming were recorded in an idea matrix and then used to guide a literature review of 
existing research on hybrid systems. Many of the ideas resulting from initial brainstorming were 
well documented in literature, and additional ideas were added to the list of possibilities as a 
result of the review. 

Several hybrid systems quickly rose to the top as good candidates for further investigation. These 
ideas were discussed extensively within the project team and then were compared using a 
decision matrix to narrow the options for further analysis. The most promising system concepts 
were analyzed in detail and examined from both a technology and economics standpoint. From a 
technological standpoint, hybridized system inputs and outputs were determined using Aspen 
Plus thermochemical software. These inputs and outputs were used by the NREL Hydrogen 
Analysis Tool (H2A) to determine the cost of hydrogen production for each concept. 
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Initial Brainstorming 

During initial brainstorming the goal was to identify as many synthesis opportunities as possible 
between biomass conversion and other power technologies for the production of hydrogen and 
power. For the purposes of brainstorming, biomass conversion was assumed to include 
gasification, pyrolysis, direct combustion, and fermentation. Fermentation was used to describe 
any form of biological conversion of biomass to fuels. These five options then were compared 
with a list of possible power technologies, including traditional renewables such as wind and 
solar but also including coal, nuclear, and other technologies. 

An idea matrix was constructed, with biomass technologies along the top and other power 
systems listed along the side. This table was used for brainstorming binary technology 
combinations. The summary table is shown in Figure 1 (darker cells correspond to greater 
perceived promise). It is based on a more-detailed numerical weighted-value matrix that can be 
found in Appendix A. Technologies that had large resource availability, low greenhouse gas 
emissions, and were relatively near term were favored in the ranking process. Initial ideation led 
to serious discussion of the major concepts listed below. 

Combined wind power and biomass gasification for co-production of fuel and power. 

Combined electrolysis and biomass gasification for co-production of fuel and power. 

Combined coal and biomass gasification systems for co-production of fuel and power with 
carbon sequestration for both processes. 

Modified, integrated, combined-cycle systems to be fed with syngas from biomass 
gasification for co-production of fuel and power. 

Combined, direct concentrated solar and biomass gasification for fuel production. 

Co-location and thermal integration using steam from a nuclear reactor to feed bio-oil 
reforming to produce fuel. 

Co-location of biomass gasification and wastewater treatment for co-production of fuel and 
power. 
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Figure 1. Idea matrix results 

Literature Review Findings 

A literature review was undertaken to determine the state of research with respect to biomass 
hybridization. The review showed that many of the concepts listed above have been or currently 
are being studied. There are, however, several topics where research is either sparse or 
nonexistent and others where significant research still is required. 

All of the systems considered included some form of biomass conversion, therefore the first step 
was to determine the availability of biomass resources. Figure 2 shows (in green) the areas of the 
United States that have greater than 2,000 ton per day (TPD) of biomass available within a 
50-mile radius. Multiple types of biomass were considered, including crop residues, forest 
residues, and primary and secondary mill residues. 
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Figure 2. Biomass resources availability1

Concentrated Solar—Biomass 
 

Using solar energy to provide the heat for thermochemical biomass processing would reduce the 
environmental impact of both gasification and pyrolysis facilities. There are two main areas of 
research in this hybridization option—direct thermal transfer and indirect thermal transfer. 

 

Figure 3. Parabolic (near) and tower (background) solar concentrators 

In direct thermal transfer, solar concentrators are focused into the reaction chamber of a 
pyrolyzer or gasifier. To date, several bench-scale systems have been designed and tested with 
disappointing results (Lede 1999). These systems suffer from several technical problems 
including the amount of solar concentration needed to reach plausible reaction temperatures, 
solar intermittency, the need for a clear window into the reaction chamber, scalability concerns, 

                                                 
1 Additional NREL biomass GIS data is available at http://www.nrel.gov/gis/biomass.html. Accessed November 
6, 2009. 

http://www.nrel.gov/gis/biomass.html�
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and the severe solar diffusion caused by particle movement within the reactor. In addition to 
technical challenges, capital costs for building a plant are expected to be significant. Although 
technical hurdles remain, valuable research is ongoing. A good summary of the state of 
technology is provided by Steinfeld in “Solar Thermochemical Production of Hydrogen––A 
Review” (Steinfeld 2005). Research on this topic also is ongoing at the University of Colorado.2

Indirect thermal transfer relies on heating the outer walls of a reaction chamber or heating an 
intermediate used for thermal storage. These systems can provide a more consistent heat source 
at the expense of reduced absolute temperature. Because of temperature limitations, indirect 
thermal transfer systems are more likely to be used for biomass pyrolysis than for gasification. 
One interesting option is the use of concentrated solar energy to heat molten salts, which then 
can be used as a pyrolyzing medium. Preliminary research suggests that, using this approach, a 
pyrolysis reactor could be run at steady state on solar energy alone (Adinberg, Epstein, and 
Karni 2004). 

 

Whether indirect or direct thermal transfer is used, both technologies require significant solar 
radiation and concentration. Rough concentration ratios for trough, tower, and dish concentrators 
are 100, 1,000, and 3,000 suns respectively (Masters 2004). All three technologies are feasible 
for power generation using a heated fluid in a traditional thermal cycle. Trough concentration 
systems typically run at temperatures ranging from 300 to 400 °C.3

The United States has significant solar resources at its disposal, but they generally are 
concentrated in the deserts of the southwest where biomass availability is low. Plant location is 
further restricted because tower concentration systems require not only high solar radiation but 
also large areas of flat land for construction. Transportation costs are one of the major obstacles 
to using biomass as an energy source, therefore the lack of local resources is problematic. Figure 
4 shows the areas with biomass resources greater than 2,000 TPD within 50 miles (in green). 
Orange denotes solar resources in the southwestern United States of 6 kWh/m2/day or greater 
direct normal radiation. The solar resources are further constrained to flat sites (areas with less 
than 1% land slope) excluding environmentally protected lands, urban areas, and water features. 
In short, the orange areas show sites that might be capable of supporting a solar tower 
concentrator plant. 

 The temperatures needed for 
pyrolysis and gasification (500 °C and 860 °C, respectively) favor tower or dish concentration 
systems. Tower concentrator systems are the most likely candidate for use with a stationary 
chemical reactor. 

 

                                                 
2 http://aiche.confex.com/aiche/2008/preliminaryprogram/abstract_133827.htm. Accessed November 20, 2008. 
3 http://www.nrel.gov/csp/troughnet/power_plant_data.html. Accessed November 8, 2009. 

http://aiche.confex.com/aiche/2008/preliminaryprogram/abstract_133827.htm�
http://www.nrel.gov/csp/troughnet/power_plant_data.html�
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Figure 4. Solar tower plant locations versus biomass resources 

Biomass gasification and pyrolysis plants typically require external electrical power for 
operation when the plants are optimized for fuel production. Because of this fact, many of the 
biomass gasification and pyrolysis research papers reviewed mentioned that the use of renewable 
sources of power would further add to the environmental benefits of biomass processing. 
Although many papers mentioned using electricity produced by renewables, no research that 
directly addresses the combination of intermittent photovoltaic (PV) power with thermochemical 
processing was found. 

Use of photovoltaic electricity has several advantages over direct use of the radiation. The most 
significant advantage is the possibility of bringing the electricity to the biomass resources rather 
than having to ship biomass large distances. In addition, there is significant potential for 
distributed photovoltaic installation throughout the United States.4

The availability of low-cost solar generated electricity could be a challenge due to many factors. 
Peak solar radiation generally coincides with peak electricity demand, making the cost of the 
renewable electricity too great for cost-effective biorefinery usage. In addition, capital costs 
remain high for solar installations, driving up the baseline cost of solar-generated electricity. 

 

Photo-electrochemical water splitting is a future possibility for hydrogen production via direct 
water splitting. This technology currently is not considered viable for hybridization because of its 
high cost and low efficiency, even at bench scale (Turner et al. 2008). In the future, it could 
provide a way to produce oxygen and hydrogen for biomass gasification without the significant 
electricity requirements of both cryogenic air separation units and electrolyzers. 

                                                 
4 NREL GIS data is available online at http://www.nrel.gov/gis/solar.html. Accessed November 8, 2009. 

http://www.nrel.gov/gis/solar.html�
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Integrated Gasification Combined Cycle 
Biomass gasification for power generation is a more efficient route to power production than 
direct combustion of biomass. Extensive research has been conducted on using biomass and the 
syngas produced by a biomass gasifier to create power using either a gas turbine alone, a steam 
turbine alone, or an integrated combined-cycle approach. At least two major studies have been 
released by NREL directly addressing the technology, economics, and life-cycle implications of 
this type of hybrid power-generation technology (Craig and Mann 1996). In addition to these 
assessments, many biomass-to-liquid fuel studies assume that unconverted syngas is burned in a 
gas turbine for power generation (Larson and Celik 2005). 

From a greenhouse-gas emissions standpoint, biomass-based power plants produce significantly 
fewer emissions than do coal or natural gas systems. Even when carbon sequestration is used on 
fossil-fuel plants, a biomass integrated gasification combined-cycle (IGCC) plant produces fewer 
atmospheric greenhouse gas emissions (Craig and Mann 1996). The major challenge for 
biomass-based IGCC plants is the economies of scale limitations due to biomass availability. 
Biomass IGCC plants typically are in the 10-MW to 60-MW range, as compared to 500-MW 
coal gasification plants (Electric Power Research Institute 2006). 

Fuel Cell—Biomass 
Coupling a fuel cell directly with the syngas output of a biomass gasification plant is a highly 
efficient way to produce electricity from biomass. With no moving parts and freedom from the 
Carnot limit, fuel cells can achieve much greater efficiencies than conventional turbines. In 
addition to high efficiencies, fuel cells run on a variety of fuels and typically have low 
maintenance requirements. 

Molten carbonate (MCFC) and solid oxide (SOFC) fuel cells are the most likely candidates for 
combination with gasification because of their relatively low fuel-quality demands, high 
operating temperatures, and tolerance of carbon monoxide (Seitarides, Athanasiou, and 
Zabaniotou 2008). Owing to the high operating temperatures of these fuel cells (600°C to 
1,000°C), it is typically most economical to use them to produce combined heat and power. 
Several studies have examined the possibility of combining gasification with high temperature 
fuel cells. Total plant electrical efficiencies of approximately 40% have been reported in 
literature (Wang et al. 2008). 

The major obstacles to both biomass SOFC and MCFC systems are cost, syngas cleaning, and 
durability. Both SOFC and MCFC systems are extremely sensitive to sulfur and some of the 
corrosive tars produced by gasification. The cost of syngas increases with increasing purity 
requirements, thus cleaning the syngas for fuel cell use could be a significant burden. High-
temperature fuel cells are commercially available but cost still is a major barrier to large-scale 
deployment, especially when combined with the high costs of gasification equipment. 

Electrolysis—Biomass 
Directly heated gasification systems require a source of pure oxygen if they are to be used for 
fuel production. Currently, plants that use oxygen produce it with cryogenic air separation units 
(ASU) (Ciferno and Marano 2002). Electrolysis could provide an alternative to air separation 
units with the added benefit of producing a pure hydrogen stream. Initial research has shown that 
this hybridization option could be promising from both a technical and economic perspective 
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(Gassner and Marechal 2008). The feasibility of producing oxygen and hydrogen with 
electrolysis, however, is heavily dependant on both the price of electricity and the value of the 
end products to the plant. 

At standard temperature and pressure, an ideal electrolyzer would use 39 kWh of electricity to 
produce 1 kg of hydrogen. The actual state of technology limits system efficiencies to between 
56% and 73% meaning that approximately 53 kWh to 70 kWh of electricity is needed for every 
kilogram of hydrogen produced (Kroposki et al. 2006). 

Replacing a single ASU unit for oxygen production requires multiple electrolyzers. The largest 
commercial electrolyzer is produced by StatoilHydro (formerly NorskHydro); it has a maximum 
flow rate of 43.6 kg/h of hydrogen (174.4 kg/h of oxygen).5 A 2,000 TPD biomass gasifier 
would require a large bank of these electrolyzers running at full capacity. According to NREL’s 
most recent H2A forecourt6

Along with the high capital cost of electrolysis there are other concerns with this hybridization. 
Water usage is a key concern with electrolyzer systems, and would be especially pronounced 
when combined with the generally high water requirements of biomass processes. Also, 
pressurized gasification plants use nitrogen from the ASU unit for pressurizing the biomass feed 
system. Another source of inert pressurization would be needed. 

 electrolysis analysis, one 174.4-kg/h electrolyzer installed with 
hardware costs approximately $2.5 million. Therefore the electrolyzer bank for a 2,000 TPD 
gasification plant would cost significantly more than a comparable ASU unit. One possibility for 
addressing these high capital costs is to use enriched air for gasification rather than pure oxygen. 

Wastewater Treatment—Biomass 
Every year approximately 5.6 million dry tons of solid waste (or sludge) is produced in the 
United States (Bagchi et al. 2006). A significant amount of this sludge is either land filled or 
incinerated. Gasification could provide an alternative use for this readily available source of 
biomass. 

The high water content of sludge is a significant challenge faced by traditional biomass 
gasification systems. Two options exist to overcome the water challenge. Municipal waste can be 
preprocessed and dried to levels acceptable to the reaction chamber before gasification, or the 
gasifier can be run at much lower efficiencies and the water can be vaporized in the reaction 
chamber itself. Using a directly heated gasifier and wet biomass would result in a significant 
percentage of the input carbon being burned to heat water rather than to produce syngas. 

One promising alternative to traditional gasification is plasma gasification. Plasma gasification 
typically is done with electrically heated arc furnaces running at temperatures well above 950°C. 
It has been successfully used to produce high-quality syngas and power from sewage sludge in 
the United States, Canada, Malaysia, and Japan. The most well known of these plants is located 
in Japan. It produces approximately 4 MW of grid electricity by processing 138 tons of sewage 
sludge per day. A good overview of the state of the technology and references to existing plants 
can be found in “Plasma Gasification of Sewage Sludge: Process Development and Energy 
Optimization,” by Mountouris et al. (2008). 
                                                 
5 StatoilHydro. “Hydrogen Technologies”. http://www.electrolysers.com/. Accessed November 8, 2009. 
6 Forecourt refers to a refueling station. 

http://www.electrolysers.com/�
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Though less glamorous, biogas digesters are another option for turning sludge into useful gas. 
This 100-year-old technology has been—and is—used by households in China, India, and other 
countries to produce natural gas for combustion in lanterns and stoves. Because the technology is 
simple and implementation is low cost, this approach is being adopted by many wastewater 
treatment facilities in the United States. 

Coal—Biomass 
Due to the large existing coal infrastructure in the United States, early combinations of coal and 
biomass involve cofiring or co-gasification of biomass with coal. Biomass can be co-fired in 
existing coal combustors but only in marginally small percentages due to feed problems (Wang 
et al. 2008). One way to address feed problems is to gasify biomass and then co-feed pulverized 
coal and biomass-produced syngas into existing combustors (Electric Power Research Institute 
2006). Another option is to torrefy (or thermally pre-treat) the biomass, which produces a char 
that can be co-fed with the coal slurry. A good overview of the practical issues of duel-feed 
systems is provided in “Biomass Cofiring: Economics, Policy and Opportunities” (Hughes 
2000). In addition to Hughes article, the DOE white paper “Biomass Cofiring: A Renewable 
Alternative for Utilities” (U.S. Department of Energy 2000) provides information about existing 
plants operating on both fuels. 

Co-gasification of coal and biomass has been a focus of recent research with several good papers 
published in the last few years (McLendon et al. 2004; Valero and Uson 2006). These dual-feed 
systems help to reduce the greenhouse gas emissions of the existing coal infrastructure while 
maintaining economies of scale and avoiding the difficulties of finding large, reliable quantities 
of biomass for power generation. When significant amounts of biomass are co-fed, problems can 
result from increased fouling of downstream processes and high alkali content in the product ash. 
In the Netherlands, the Buggenum coal gasification plant has reported co-feed percentages of up 
to 30% with only minor changes in plant power and waste output (Electric Power Research 
Institute 2006). One recent paper proposed coal gasification with biomass co-feed for production 
of fuel and power (Cormos 2009). 

Another synthesis possibility is thermal integration of biomass gasification or bio-oil reforming 
facilities with existing coal-fired power plants. Biomass gasification, whether directly or 
indirectly heated, requires a steam source that could come directly from a coal power plant. The 
major challenges to this type of integration are the added capital cost, the low steam temperatures 
relative to gasification requirements, and the mismatch in scale between biomass availability and 
steam production. Biomass availability could be addressed by gasification of bio-oil produced 
from multiple off-site pyrolysis units. Reports directly addressing the technological and 
economic possibilities of this system were not found during the literature review. 

Nuclear—Biomass 
Thermal integration and co-location of biomass processing with nuclear energy is a promising 
hybridization option. The presence of near carbon-neutral power and steam from the reactor 
could significantly increase the efficiency of a biomass plant. Charles Forsberg makes a strong 
case for this concept in his paper “Meeting U.S. Liquid Transport Fuel Needs with a Nuclear 
Hydrogen Biomass System” (Forsberg 2007). 
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Nuclear energy currently provides 20% of the electricity in the United States (Nuclear Energy 
Institute 2009). According to the Nuclear Energy Institute there are 104 nuclear reactors in the 
United States, and another 30 plants currently are seeking federal license approval. All of the 
existing plants provide a reliable source of electricity and could provide low-pressure, low-
temperature steam to a biomass-processing facility. Currently, this steam is a waste stream that 
must be condensed after the last turbine cycle for U.S. plants. Most gasification plants would 
need to upgrade the steam quality before it entered the reactor, but ethanol plants could use the 
low-quality steam directly (Cormos 2009). 

For economic reasons, to benefit from hybridization the nuclear plant would need to either be 
near large biomass resources or have access to low-cost barge transportation. Figure 5 shows an 
overlay of existing nuclear facilities (marked by black dots) versus biomass availability. 

 

Figure 5. Nuclear plant locations versus biomass resources 

Even with significant biomass resource availability, a scale mismatch between biomass 
availability and steam production remains. As mentioned in the coal-biomass section of this 
report, scale issues could be addressed by gasifying bio-oil produced from multiple off-site 
pyrolysis facilities (the “hub-and-spoke” concept). One way to take advantage of the scale 
mismatch might be to pull a slipstream of super-critical steam from the power plant steam cycle 
for use in gasification. No documentation or research was found on this concept. Significant 
plant modifications would be required for this type of integration. 

Nuclear power plants rely on nonrenewable uranium resources to create heat and subsequently 
power. For any biomass-nuclear hybridization to be reasonable, sufficient domestic uranium 
resources must be available in the long term. According to Nuclear Energy Association 
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estimates, fuel availability is not a concern for several centuries (Price and Blaise 2002). 
Reserves could last significantly longer with improvements in mining technology and reactor 
design, and increased fuel-rod recycling. 

Major challenges to such a system include the resistance of many people in the United States to 
the building of new nuclear plants, and U.S. security concerns involved with additional on-site 
processing. It might be possible to address both issues with biomass. Placing the biomass plant 
outside of the secure perimeter and piping the steam over the fence could negate security 
concerns. Creating an additional source of farm income in rural areas could go a long way 
towards overcoming local resistance to nuclear reactors. 

Wind—Biomass 
Biomass gasification and pyrolysis plants typically require external power for operation when the 
plants are optimized for fuel production. Because of this requirement, many of the biomass 
gasification and pyrolysis literature reviewed mentioned that the use of renewable sources of 
power would further add to the environmental benefits of thermochemical biomass processing. 
Although many papers mentioned using electricity produced by renewables, few examined how 
to directly couple intermittent wind power with thermochemical processing. 

Wind turbines have quickly become a widely accepted, commercial source of renewable energy 
in the United States. Over the last 29 years, U.S. utilities have vastly improved their knowledge 
and ability to manage intermittent electricity sources. Significant issues remain, however, if 
large-scale wind power is pursued in the United States. These issues are addressed in detail in the 
Department of Energy report “20% Wind Energy by 2030” (U.S. DOE, Energy Efficiency, and 
Renewable Energy Laboratory 2008). 

The two most significant issues with wind power are its location and its intermittency. Figure 6 
shows the nation’s wind-resource distribution. The vast majority of land-based wind resources 
are found in the rural areas of the middle United States. To successfully utilize these resources 
power must be transported long distances to demand centers. Additionally, the intermittency of 
wind means that installing too much capacity will create grid instability unless suitable grid-
leveling options are available. 

Transportation of wind-generated power can be accomplished via the electrical grid or by 
converting the electricity to a transportable fuel. Using the national electric grid to transport the 
power would require significant updates to the national infrastructure. Additional high-voltage 
transmission lines would be needed to connect wind resources with urban areas (U.S. DOE, 
Energy Efficiency, and Renewable Energy Laboratory 2008). Another option is to convert 
intermittent electricity into a fuel. Several studies recently have been conducted on using 
electrolyzers to create hydrogen from wind-generated electricity (Levene, Kroposki, and 
Sverdrup 2006). 
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Figure 6. Wind resource availability map (U.S. DOE 2009) 

Intermittency of wind electricity can cause challenges for the power grid if proper leveling 
options are not available. One option commonly used today is to use natural gas turbines to 
maintain system reliability. Turbines are readily available and can be brought online and off-line 
very rapidly. Another option is to use batteries and electrolyzers to store power during peak 
winds for use during low-wind or no-wind conditions (Fingersh 2004). 

One of the only articles found to address the challenges of wind directly with biomass processing 
is by Paul Denholm (NREL). The proposed system would use compressed-air energy storage to 
store off-peak electricity generated by wind. This energy then would be used as needed by a 
properly designed biomass gasification plant (Denholm 2006). 

It appears from Figure 6 that significant portions of national wind resources are in areas that also 
have biomass availability. Because of this, the shift from viewing wind electricity as an external 
source of electricity to trying to find direct synthesis between the two technologies appears to be 
a promising area of research. As a first step in this direction, we constructed maps that overlaid 
class 4 or better wind resources on biomass resources. For both maps the wind resources are 
shown in red and exclude potentially sensitive environmental lands, wind on water features, and 
stranded wind resources (i.e., small isolated areas). The green shading on both maps indicates 
that more than 2,000 TPD of the specified type of biomass is available within 50 miles. There is 
some “washout” of wind data because the spatial resolution on the wind resources is much finer 
than the biomass, so the flecks of red can be difficult to observe. 
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Figure 7 shows woody biomass resources versus available wind. Woody biomass includes forest 
residues, primary mill residues, and secondary mill residues. Primary mill residues are the bark 
and wood materials produced when logs are processed into lumber. Secondary mill residues con-
sider the wood scraps from woodworking shops and factories (such as furniture manufacturers). 
As can be seen on the maps, there are small pockets of the northwest and northeast United States 
where both class 4 or greater wind and sufficient woody biomass exist for a co-located, 
combined system. 

 
Figure 7. Wind resources versus woody biomass resources 

Figure 8 shows agricultural (crop) residue biomass resources versus available wind. Crop 
residues considered included corn, wheat, soybeans, cotton, sorghum, barley, oats, rice, rye, 
canola, beans, peas, peanuts, potatoes, safflower, sunflower, sugarcane, and flaxseed. It is 
important to note that estimates of residue were adjusted down to allow for soil-erosion control, 
animal feed, bedding, and other existing farm uses (Milbrandt 2005). There is significantly more 
overlap of agricultural biomass with wind than woody biomass and wind. 
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Figure 8. Wind resources versus agricultural biomass resources 

Industrial Hybridization 
It could be advantageous to look to industries that currently have high heat processes, biomass 
waste streams, or large steam requirements for synthesis possibilities. One example found in the 
course of literature review was the replacing of industrial gas in limekilns with synthesis gas 
from the gasification of hog fuel (Gribik 2007).7

Concept Down Selection 

 Such research is outside of the scope of this 
project but might be a promising area for future research. 

Using the literature review process to refine and augment initial brainstorming, the following list 
of promising hybridization options was compiled. 

Combined wind power and indirectly heated biomass gasification plant for co-production of 
fuel and power. Electric heaters could be used to increase the efficiency of hydrogen 
production in the plant. 

Use of an electrolyzer in place of an air separation unit for a directly heated biomass gasifier 
for co-production of fuels and power. In addition to providing oxygen for the gasification 
reaction, the hydrogen produced can be used to increase fuel production of the plant. This 
system can be combined with wind so that additional oxygen and hydrogen can be 
produced during off-peak hours for use during times of high electricity demand. 

Combined biomass gasification and solid oxide or molten carbonate fuel cells. The syngas 
produced by gasification produces power via the fuel cell. This system should provide 
greater overall electrical efficiency than a similar combined-cycle system. 

                                                 
7 Hog fuel is an unprocessed mix of coarse chips of bark and wood fiber. 
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Thermally integrated coal power plant and biomass/bio-oil gasification system. Possible 
opportunities for research include examining whether gasification of bio-oil could be 
used to improve the kinetics of coal gasification, whether waste steam could be used for 
gasification, and the life-cycle implications of the combination. Carbon sequestration 
could be used to benefit both processes. 

Combined concentrated solar and molten salt biomass pyrolysis. The heat needed for 
biomass reforming is generated from a renewable, carbon-neutral source. 

Direct, concentrated solar energy for biomass gasification. 

Co-located and thermally integrated bio-oil reforming using the supercritical water from a 
nuclear reactor to create hydrogen or other liquid fuels (via a distributed pyrolysis 
system). 

Co-located biomass gasification and wastewater treatment for co-production of fuel and 
power. 

 
To narrow the hybrid systems (mentioned above) down to two, for further investigation, a 
decision matrix was constructed. A decision matrix is used to compare multiple alternatives to a 
chosen baseline case. For this project, all systems were compared to a biomass gasification 
integrated combined-cycle system. Each system then was ranked on criteria including green-
house gas emissions, feedstock renewability and availability, reliability, cost, fuel production 
(syngas output per unit biomass), and the state of the technology. Rankings were input based on 
better (+1), worse (-1) or neutral (0). It is common practice to apply weighting factors to the 
criteria as needed. Because of the variety of systems involved, and to select the most generally 
promising systems, all weighting factors (w) for this study were equal (value of 1). 

 
Figure 9. Decision matrix 

It can be seen from the matrix that the concentrated solar systems scored poorly due to their high 
cost, intermittency, and concerns with the state of the technologies involved. Coal-based systems 
were low on the decision matrix because of the greenhouse gas emissions involved and concerns 
with the scaling disparity between available local biomass resources and coal plant outputs. 
Electrolyzer–gasification and wastewater (or sludge) gasification are seen as alternatives to 
biomass combined-cycle technology. The possibility of using nuclear steam for gasification also 
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is an alternative to the baseline, but concerns remain about the nonrenewable fuel required for 
nuclear power and the scaling disparity between biomass resources and plant outputs. 

Direct wind and wind-electrolyzer combinations with biomass gasification rose to the top of the 
decision matrix due to several factors. Little research has been done in these areas to assess 
economics and technical feasibility. In addition to novelty, the use of renewable wind resources 
to power a renewable biomass process lays the foundation for truly renewable fuel production. 
Finally, both cases have the potential to increase syngas and fuel yields from a given amount of 
biomass. 

The two concepts chosen for further analysis can be stated as follows. 

Direct grid leveling of intermittent wind power with an indirectly heated biomass gasification 
plant. The plant will produce both electricity and fuel. 

Using an electrolyzer in place of an air separation unit for a directly heated biomass gasifier 
for co-production of fuel and power. 

Both of the concepts chosen for further analysis share the basic idea of combining wind-
generated electricity with a biomass gasification plant. Wind availability significantly overlaps 
biomass resource availability, making the use of locally produced wind electricity for gasifica-
tion feasible. Additionally, gasification plants provide multiple opportunities for electricity use. 

Although wind power is a promising and largely commercial renewable source of energy, its 
penetration of the grid poses some unique challenges. These challenges include management of 
intermittency with peaking units and, in the extreme case, finding use for electricity produced by 
wind when there is no demand. Managing intermittency will drive utilities to invest in additional 
peaking units and will increase the need for interruptible customers and dispatchable loads. 
Finally, wind in many parts of the country is a stranded resource because of a lack of grid access. 
Finding direct synthesis between the two technologies could allow a hybrid system to manage 
local intermittency or capture stranded resources. 

Figure 10 shows an hourly wind profile from Norfolk, Nebraska, versus the electricity demand 
for the same hours as reported by the Midwest ISO. Three lines are plotted showing the wind 
profile at 1%, 20%, and 100% wind penetration to the market. At current levels (1%) wind 
energy has little if any effect on the broader energy market. At 20% wind power, significant 
peaking units are needed to manage the constantly changing wind generation. Dispatchable 
demand also could become a sought-after service to the grid at night and at any other times when 
high wind is not in phase with demand. Although 100% wind power is not a possibility on a 
regional scale, the curve is shown to emphasize the effect that wind power can have in localized 
pockets of the rural grid where there could be significant wind generation and low demand. 
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Figure 10. Wind generation versus demand for a one-week period 

The proposed hybrid systems attempt to do one of two things: 

Fill wind-energy shortfalls and replace the natural-gas turbines that generally are used for 
this peaking purpose with a renewable alternative while also generating hydrogen; or 

Absorb wind-generated power when there is no demand for it. To date, most research has 
focused on the use of batteries, pumped hydro, hydrogen storage and fuel cells, and 
flywheels to store this energy for later use on the grid. Biomass gasification aided with 
wind electricity could “sink” this energy into fuel and provide dispatchable demand for 
the local utility. 

Indirect Gasifier Hybrid System 

This concept investigates two possible changes to a biomass-to-hydrogen plant based on indirect 
gasification architecture. The first modification is to allow switching between fuel production 
and electricity production based on grid demand. This is accomplished by routing some or all of 
the synthesis gas from the gasifier to a gas turbine instead of to the fuel-production reactors. In 
addition to power production, modifications that enable use of additional cheap or surplus 
electricity by the gasifier are investigated. 
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Figure 11. Indirect hybrid block diagram 

Indirectly heated gasification is a two-stage fluidized-bed process where the heat needed for 
reaction is produced by burning char in a separate chamber to heat sand. The hot sand then is 
circulated through the reaction chamber to drive reaction kinetics. The layout is shown in 
Figure 12. 

 

Figure 12. Indirect gasifier diagram 

Electricity supplied to the gasifier during periods of low demand (lesser purchase price) will be 
used to heat the gasifier reaction chamber. As the temperature of the gasifier is increased, the 
proportions of syngas, char, and tar produced by the gasifier from a given amount of biomass 
change via a known relationship for a given system. Adding heat energy will create additional 
syngas, which will increase plant efficiency. 
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The ideal plant would continuously adjust both feed use and fuel production to optimize the plant 
economics. Electricity would be produced instead of hydrogen only when electricity was the 
more profitable product and vice versa. Similarly, electricity would be used for heating (or be 
sunk) only when electricity costs were low enough that the additional efficiency provided by the 
heat offsets the cost of that electricity. The feed and product selection decision is summarized in 
Figure 13. 

 
Figure 13. Concept 1 feed and product selection 

Analysis of this concept was separated into the peaking and sinking modifications. The two 
modifications were analyzed individually to highlight the effect of each on plant economics. 

Peaking Modifications 
Previous NREL studies examined the possibility of using a 2,000 TPD woody biomass plant for 
dedicated power production and for dedicated hydrogen production (Craig and Mann 1996; 
Spath et al. 2005). These studies assumed steady-state operation of the biomass plant. The 
current analysis differs from previous studies by alternating between hydrogen production and 
electricity production based on market demand. This effectively combines the existing NREL 
Biomass-to-Hydrogen and biomass integrated gasification combined cycle (BIGCC) studies into 
one hybrid system. Figure 14 shows the proposed combination of the two previous studies for the 
current analysis. 
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Figure 14. Proposed peaking hybrid process 

The proposed plant could increase the economic promise of biomass utilization. The syngas 
produced by the gasifier can be used to produce hydrogen fuel or it can be used in a gas turbine 
to provide peaking electricity, depending on which option will maximize profit. 

The synthesis gas composition available for use in all calculations is based on the biomass-to-
hydrogen indirectly heated gasifier study previously completed by NREL (Spath et al. 2005). 
The “goal design,” flows, and specifications were used based on the suggestion of the biomass 
group and are referred to as the “base plant” or “base design.” 

Plant Design 
Multiple locations were considered for redirecting the syngas flow over to the turbine during 
power generation. Tar reforming is required because tars are extremely corrosive and could 
adversely affect the turbine combustor. Additionally, the tar represents a significant portion of 
the potential syngas energy, so cracking the tars converts that energy into a compatible form. 
This meant that the first possible location to split the syngas stream for combustion was directly 
after the tar reformer. 
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Other possible locations included: 

Directly after the compression chain before the LO-CAT (hydrogen sulfide removal process) 
system; 

Between the LO-CAT and ZnO sulfur-removal steps; 

Before the pre-PSA knock-out drum; and 

Directly before the PSA unit. 

Table 1 shows the syngas flow, properties, composition, and approximate heating values for each 
option. For this analysis, syngas from the LO-CAT reactor is sent to the gas turbine. By placing 
the turbine after one or both of the sulfur-removal steps, emissions of SOx can be reduced 
significantly. 

The options of burning syngas directly prior to the PSA process or burning the hydrogen product 
directly in a gas turbine also were considered, but each would result in less power production due 
to the lower heating value of the fuel stream. Additionally, using pure hydrogen as fuel in a gas-
turbine requires significant steam or nitrogen co-feeding and cooling modifications (Chiesa et 
al. 2005). 

Table 1. Turbine Feed-Stream Possibilities 

Option number 1 2 3 4 CNG 
Stream number 317 326 417 420 427 
Flow (kg/sec) 23.38 23.27 40.68 31.00 — 
Pressure (bar) 29.3 28.3 25.5 24.8 1.0 
Temp (°C) 60 48.9 43.3 43.3 15.5 

–Mass Fraction (%)– 
H2 6.61 6.64 5.92 7.77 — 
H2O 0.72 0.31 24.05 0.35 — 
CO 54.21 54.48 1.73 2.27 — 
N2 0.14 0.14 0.08 0.11 1.8 
CO2 36.04 36.22 66.96 87.87 1.3 
H2S 0.09 - — — — 
NH3 0.02 0.02 0.01 — — 
CH4 1.71 1.72 0.98 1.29 91.4 
C2H6 — — — — 5.5 
C2H4 0.42 0.43 0.24 0.32 — 
C2H2 0.04 0.04 0.03 0.02 — 
C6H6 — — — — — 

–Energy Content (MJ/kg)– 
LHV 14.5 14.6 7.89 10.4 48.3 

 
The system will be binary, meaning that it produces either power or hydrogen, but not both 
simultaneously. Switching between the two modes presents several technical challenges due to 
the great degree of thermal integration in the base plant. 
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The most significant technical challenges identified included the following. 

Downstream water-gas shift (WGS) catalyst beds are extremely sensitive to air exposure and 
therefore syngas flow must be maintained or the beds must be effectively sealed if shut 
down. 

The pressure swing adsorption (PSA) off-gas from hydrogen production is burned (with a 
small amount of trimming natural gas) to heat the tar reformer catalyst regenerator. This 
energy must be replaced when the PSA is not running. 

The base design includes a thermally integrated steam cycle, which is partially fed by syngas 
cooling steps downstream of the split location. Loss of this heat energy to the steam 
turbine will adversely affect the plant power system. 

In the base design, pressure swing adsorption off-gas is burned with a small natural gas feed in 
the tar reformer catalyst regenerator. The natural gas is needed because of the low heating value 
of the PSA off-gas (approximately 3 MJ/kg). The energy balance and mass flows into the 
catalyst regenerator unit in the base design are summarized in Figure 15. 

 

Figure 15. Tar reformer catalyst regenerator flows 

If all of the syngas stream is diverted to a gas turbine for power generation for any period of time 
then the tar reformer will cease to function. Instead, some fraction of the syngas stream must be 
used to make up the lost energy flow when the PSA system is shut down. The proposed solution 
divides the syngas stream directly after the LO-CAT sulfur removal step so that a fraction is sent 
downstream through the water-gas shift reactors and then sent to the tar reformer catalyst 
regenerator to be burned rather than going through the PSA unit. This approach should 
effectively keep the sensitive WGS catalysts from air and also meet the energy demands of the 
tar reformer system. Additionally, it is assumed to keep all base-design systems warm and active 
(except for the PSA unit) until peaking is completed. 

The pressure ratio between the feed and purge gas of a PSA is critical. Greater purge pressures 
result in significantly reduced hydrogen recovery rates. The current design uses a feed pressure 
of 360 psia and a purge pressure of 20 psia. Because pressure ratio is so critical to maintain 
proper function of the PSA unit, continuing to produce hydrogen with a lesser flow (lower 
pressure) does not appear to be a viable option. Because the reactor runs at low temperature and 
has little condensable water, a properly insulated PSA unit should be capable of being shut down 
for short periods. 

To maintain the base-plant steam system, some portion of the exhaust gases from the gas turbine 
is run through a heat exchanger. The size and design of the heat exchanger will be such that it 
exactly replaces heat loses due to the smaller flow in the water-gas shift heat exchangers. 
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Modeling 
Aspen Plus simulation software was used to test the feasibility of running the design scenario 
previously described. The existing biomass-to-hydrogen simulation was modified to include the 
power generation system running at steady state. Detailed discussion of the Aspen modifications 
can be found in Appendix B. 

Splitting the syngas flow after the LO-CAT reactor was done so that the flow of trimming natural 
gas to the tar cracker and the flow of PSA off-gas both were replaced with syngas. Specifically, 
enough syngas flow was maintained through the water-gas shift reactors to exactly meet the 
energy demands of the tar reformer catalyst regenerator instead. The PSA is shut down during 
power generation. The remaining flow at the split is sent to the gas turbine. Figure 16 shows the 
split of syngas that meets the design requirements. 

 

Figure 16. Syngas stream split 

Given the quantity and properties of the syngas available for combustion, a gas turbine was 
selected for the plant. Simple cycle gas turbines typically are used for peak-shaving applications 
because they can be quickly brought online and off-line. Combined-cycle systems have 
significant start-up times due to the great amount of thermal mass involved with steam 
generation. One possible alternative is to run the combined-cycle system constantly but at a 
lower power level until more power is needed. Although the NREL BIGCC study used an 
integrated combined-cycle system (ICC) for power generation, a simple-cycle gas turbine was 
selected for this analysis. The turbines considered are summarized in Table 2. 

The GE MS6001FA (6FA) simple-cycle turbine was chosen for this analysis. The 6FA and 7EA 
turbines have the same approximate power output, but the F class turbines are significantly more 
efficient than the older E class. Both the 6FA and the 7EA turbines can be run on synthesis gas. 
The 6B turbine initially was thought to be the proper size but was discarded as an option after the 
actual split fractions were determined in Aspen. The energy content in the syngas is not 
sufficient to use the larger 7FA family of turbines. 
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Table 2. GE Turbine Specifications8

 

 

MS6001B MS6001FA MS7001EA 
Output (MW) 42.1 (42) 75.9 (90) 85.1 (90) 
Heat rate (kJ/kWh) 11,226 10,332 11,002 
Pressure ratio 12.2:1 15.7:1 12.7:1 
Mass flow (kg/s) 141 204 294 
Turbine speed (rpm) 5,163 5,254 3,600 
Exhaust temperature (°C) 548 603 536 
Turbine inlet temperature (°C) 1,104 1,288 1,113 
    
ICC version S106B 106FA 107EA 
ICC power output (MW) 64.3 (63) 118.1 (130) 130 (130) 

 
Several special considerations must be made when running gas turbines on a nonstandard fuel. 
The turbine typically is limited by some inlet choke flow that is determined by the compressor 
flow and mass flow of natural gas under standard conditions. When a nonstandard (low heating 
value) fuel is burned, a greater fuel-feed rate typically is needed, which can cause choking of the 
turbine and compressor stall. The 6FA can get up to a 20% up-rate when run on syngas (from 
75 MW to 90 MW) depending on the syngas composition. Allowing more mass flow through the 
turbine produces the extra power output. As more mass is forced through the turbine, the 
compression ratio increases because the turbine and compressor are coupled. According to GE 
technical documents (Drdar and Jones 2000) and information from a GE representative, to avoid 
compressor stall it is best to assume less than 14% deviation from catalogue flow rates. 

In addition to high fuel-flow rates, cooling issues can arise depending on the syngas composition. 
Increased burner temperatures can shorten the service life of a turbine as well as drastically 
increasing NOx and SOx emissions. Based on data drawn from previous GE gasification projects 
(Drdar and Jones 2000) and earlier research conducted at NREL (Craig and Mann 1996),  syngas 
compositions similar to the ones used in this study typically are humidified with steam before 
combustion. Steam was added to the syngas so that the final fuel gas was 20% H2O by weight. 
This corresponds to a lower heating value of approximately 11 MJ/kg (174 Btu/ft3). To estimate 
the power output of a GE 6FA or similar gas turbine running on the available syngas composit-
ion, an Aspen Plus model for the turbine was made and inserted into the simulation. Details of 
the Aspen model and its calibration can be found in Appendix C. 

Several important questions remain about the power generation concept that cannot be addressed 
using this thermodynamic model. The most important question is how the system will behave 
dynamically when switched between hydrogen production and power production. Answering this 
question requires either physical testing or dynamic simulation (with additional detailed plant 
design and component performance characteristics) in addition to using the model. Also, the 
turbine outputs for this simulation are realistic and representative, but detailed combustion 
analysis and testing are required to determine the plant power output more precisely. 

The results of the present analysis are summarized in Table 3. When making hydrogen fuel, the 
plant would have the major input and output variables shown in the H2 Production Mode column. 

                                                 
8 General Electric Company heavy-duty gas turbine products (2009). 
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The Power Production Mode column shows the input and output variables when the PSA unit is 
shut down. 

Table 3. Baseline Peaking Plant Inputs and Outputs 

 H2 Production 
Mode 

Power Production 
Mode 

Inputs (kW) Biomass feed 433,971 433,971 
NG feed 22,903 — 
Electricity 10,287 — 

Outputs (kW) Electricity — 77,400 
H2 232,074 — 

 
The power production value of 77.4 MW represents what a “rubber turbine”9

When running in a peaking capacity, the plant has the relatively low total efficiency of 17.8%. 
This is compared to an efficiency of 49.7% when producing hydrogen and an expected turbine 
efficiency of approximately 32%. The extremely low power-production efficiency is the result of 
multiple factors, including the fact that 21% of the syngas stream is used to maintain the water-
gas shift reactors and tar cracker rather than for power production. Additionally, a portion of the 
power output is used to provide power to the plant; during hydrogen production this power is 
provided by the grid. 

 with GE F-class 
efficiencies and an assumed nameplate capacity of 80.6 MW could produce if all of the available 
syngas is utilized. A lower value of 72 MW would be produced if a GE 6FA turbine was used for 
the plant. This number is lower because there is a small amount of syngas available that cannot 
be used by a 6FA turbine. 

The heating value of the syngas decreases after the water-gas shift reactors. This primarily is due 
to the conversion of carbon monoxide into other species, If, rather than sending the syngas for 
the tar reformer catalyst regenerator through the water-gas shift reactor before combustion, the 
syngas was burned immediately, then less gas would be needed (17% rather than 21% of the 
total syngas flow). This makes more syngas available to the rubber turbine, and 82.3 MW could 
be produced. This range of values (~70 MW to 85 MW) is used for sensitivity analysis in the 
economic model. 

Alternative Design Scenario 
Simple-cycle gas turbines typically are used for peaking applications because they can be cycled 
on and off quickly. Combined-cycle systems have significant start-up times (for example it can 
take more than 8 hours to cold start a 500-MW combined-cycle system; gas turbines alone can 
start in 12 to 15 minutes) due to the great amount of thermal mass involved with steam 
generation. One possible alternative is to run the combined-cycle system constantly, but at a 
lower power level until increased power is needed. This scenario was investigated briefly to 
provide data for the economic-sensitivity analysis. 

                                                 
9 The term “rubber turbine” means that the turbine size was set to exactly match the available fuel stream (as 
opposed to using an existing stock frame size that could not utilize all of the available fuel). 
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The GE 106FA combined-cycle turbine is rated at 118 MW nominal output, which is up-rated to 
130 MW when the turbine is run on synthesis gas (General Electric Company 2009).  Using the 
Aspen Plus simulations constructed and specifications for the 106FA, researchers estimated the 
power output possible if a combined cycle was used instead of a simple-cycle turbine. 

The proposed system requires a steam turbine to operate at approximately 30% of its rated power 
during hydrogen production and at 100% of its rated power during power production. Although 
this is an extreme swing it is possible to achieve with existing technology, assuming that large 
efficiency losses and complex control systems are acceptable. The following approximations 
were made based on discussions with a GE representative. 

When the steam cycle is operating at 100% rated power its thermal efficiency is 40%. 

When the steam cycle is operating at 30% rated power its thermal efficiency is 30%. 

Approximately 1 hour is required to ramp-up from 30% to 100% rated power. 

 
Table 4. Peaking Plant Input/Output Combined Cycle 

 H2 Production 
Mode 

Power Production 
Mode 

Inputs (kW) Biomass feed 433,971 433,971 

 NG feed 22,903 — 

 Plant power 17,781 — 

Outputs (kW) Power produced — 125,710 

 H2 232,074 — 

 
The power production value of 125.7 MW represents what a rubber turbine with GE F-class 
efficiencies could produce if all of the available syngas was utilized and exhaust heat recovered. 
A lesser value of 110 MW is produced if a lower-efficiency steam cycle was used for the plant. 
When running in a peaking capacity, the plant has a significantly better total efficiency than that 
of the gas turbine only. The increase from 17.8% to 29% should increase the economic viability 
of the system; however, it still is low as compared to an efficiency of 48.9% achieved when 
producing hydrogen. 

If the syngas was burned immediately—instead of sending the syngas for the tar reformer 
catalyst regenerator through the water-gas shift reactor before combustion—then less gas would 
be needed. This would make more syngas available to the rubber turbine and 144.98 MW could 
be produced. This range of values (~110 MW to 150 MW) is used for sensitivity analysis in the 
economic model. 

Capital Costs 
The additional costs to the existing Central Biomass Goal H2A analysis (Spath et. al. 2005) are 
summarized in Table 5. The gas-turbine numbers were taken from the Gas Turbine World 2006 
Handbook (2006) and then adjusted to 2005 dollars using Chemical Engineering’s Plant Cost 
Index. 
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Table 5. Capital Cost of Gas Turbines 

 2006 Dollars 2005 Dollars 
Uninstalled gas turbine ($/kW) 247 231 
Installation factor 1.8 1.8 
Total installed cost ($/kW) 445 417 

 
The cost associated with additional steam turbine capacity (used in the combined-cycle 
alternative design scenario) was taken directly from the baseline Biomass to Hydrogen report 
and is shown in Table 6. 

Table 6. Capital Cost of Steam Turbines 

 2002 Dollars 2005 Dollars 
Steam turbine ($/kW) 474 561 

 
Using these values and the heat exchanger prices taken from the baseline Biomass to Hydrogen 
report, the additional capital costs for both the simple-cycle and combined-cycle peaking systems 
were calculated and are summarized in Table 7. 

Table 7. Concept 1 Peaking Capital Costs 

Combined Cycle Additional Capital Costs 
 Simple Cycle Combined Cycle 
Turbine $32,249,794 $32,249,794 
Exhaust BFW preheater $247,729 $247,729 
Steam turbine $0 $27,120,801 
Total $32,497,523 $59,618,324 

 
Sinking Modifications 
Indirectly heated gasification is a two-stage process in which the heat needed for reaction is 
produced by burning char in a separate chamber and sand is heated. The hot sand then is 
circulated through the reaction chamber to drive reaction kinetics. The goal of the system is for 
the gasifier to produce enough char to heat the reaction zone to an optimal temperature. 

There is a direct correlation between the reactor temperature and the amount of syngas produced 
from a given amount of biomass. Higher reaction temperatures favor syngas production over 
char and tar production. Lower reaction temperatures cause increased tar formation and char. 
The relationship, as reported by previous correlations (Bain 1992), can be seen in Figure 17. 
Because of this correlation to temperature, indirectly heated gasifiers will reach an equilibrium 
temperature in the steady state. 
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Figure 17. Indirect gasifier product flow versus temperature (2,000 TPD) 

The equilibrium temperature that a gasifier reaches could be a less-than-optimal reaction 
temperature so that enough char can be produced to provide the required heat. Adding heat 
energy displaces the need for high char production and transforms some of the char and tar into 
additional syngas, which increases process efficiency. Alternatively, electric heating could 
provide a replacement for any syngas recycle or natural gas trimming currently used to push the 
gasifier to an optimal reaction temperature. Using excess wind power to provide electricity is one 
way to create a dispatchable load. 

Plant Design 
Initial research into how to add electric heat to the gasifier yielded interesting findings. 
Embedding typical resistive heaters might not be feasible in the corrosive environment of the 
gasifier. One possibility, however, is to use the fluidized bed itself as a “resistive element” 
through which the electricity passes. The Institute of Gas Technology considered this possibility 
in the 1970s before discarding it. The reports show that it was a technically feasible option but 
that electricity prices made it less cost effective than burning biomass. Using electricity 
selectively could change the economics. 

As work began on finding pathways to electric heating of the gasifier, the NREL Biomass Center 
was contacted. The Biomass to Hydrogen model was being updated to include new yield 
correlations for the gasifier, based on data collected in the Thermochemical Process 
Development Unit (Kinchin and Bain 2009). The results of the updated model reveal that the 
gasifier does not produce enough char to maintain gasification temperatures, therefore raw 
syngas must be diverted and combusted to supplement the heat delivered to the gasifier by the 
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char combustor. A block diagram of the updated gasifier with recycled syngas is shown in 
Figure 18. 

 

Figure 18. Updated indirect gasifier diagram 

Based on the updated model, research focused on supplementing the heat delivered to the gasifi-
er by the char combustor with electrically generated heat rather than diverting and combusting 
syngas. The design effort initially focused on adding heat directly to the olivine (sand) as it 
returned to the gasifier. This approach proved unreasonable for two reasons, listed below. 

Electrically heating the olivine with currently available collar heaters (wrap-around piping, 
Figure 19) is not possible because commercial units are not available in the temperature 
and power range necessary for this application. Although a dedicated olivine heating 
vessel can be envisioned and assumed to exist, the efficiency and capital cost for such a 
unit is difficult to estimate. 

The hot product gases from combusting the char and diverted syngas are used to dry the 
incoming biomass. If the diverted syngas is replaced with electric heaters, the olivine will 
receive the necessary heat to maintain gasification temperatures (approximately 870°C), 
but the combustion product gases used to dry the incoming biomass are limited to product 
gases from the char combustor alone, which are not sufficient to for drying the biomass. 

If the model is to be based on currently available technology, the design most likely will employ 
high-power, high-temperature electric air heaters (Figure 19). If the combustion air used in the 
syngas and char combustors is preheated, then more heat can be delivered to the olivine per 
kilogram of char or syngas combusted, resulting in a reduced amount of syngas that must be 
recycled. 
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Figure 19. Collar heater, air duct heater, and air duct heater picture (Watlow 2009) 

 
Combustion air pre-heaters actually air duct heaters that are available up to 2.2 MW. The electric 
air heaters also can heat air for use in the biomass dryer; therefore several design scenarios using 
electric heaters are possible. 

 

Figure 20. Final indirect gasifier sinking modifications 

 
Basecase. No electric heat added. This design scenario is identical to the updated Biomass to 

Hydrogen model reported in Kinchin and Bain (2009). It provides a basis for comparing 
the design cases that employ electric heating. 

Electric Air Heaters Only. This design case limits the electric heat assist to currently 
available technology (i.e., electric air duct heaters). 

Electric Air Heaters and Electric Olivine Heating Vessel. This design scenario uses 
electric air heaters to preheat the air entering the combustor, uses electric air heaters to 
heat air used to dry the biomass, and includes an envisioned electric olivine heating 
vessel. This design scenario eliminates the need to divert any syngas for heating 
purposes. All heat required for gasification and biomass drying is supplied by combusting 
char, electrically heating air, and electrically heating olivine. 
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Modeling 
Aspen Plus thermodynamic simulation software was used to test the feasibility of running the 
design scenarios previously described. As mentioned, these design scenarios were simulated 
using the updated Biomass to Hydrogen model (Kinchin and Bain 2009) and not the 2005 
Biomass to Hydrogen model. An overview of the findings is given below. 

Electric Air Heaters Only. Results of this design case are very promising. The amount of 
syngas that must be diverted is reduced by about 45%, and enough hot combustion 
products still are produced to dry the incoming biomass. Table 8 gives the detailed plant 
input and output values from the Aspen Plus simulation. 

Table 8. Sinking Plant Input and Output with Electric Heaters Only 

 
Units 

No Electric 
Heat 

Electric Air 
Heaters Only 

Biomass feed in kg/h 83,333 83,333 
Electricity in kW 6,794 53,661 

Natural gas in kg/h 3,265 3,744 

Hydrogen out kg/h 7,134 8,005 

Electric heat demand kW — 77,629 
Electric heater power kW — 86,573 

Power for syngas combustion air blower kW 1,858 3,885 

 
Electric Air Heaters and Electric Olivine Heating Vessel. As expected, results of this 

scenario indicate increased hydrogen yield, but at the expense of increased power 
requirements. Table 9 gives the detailed plant input and output values from the Aspen 
Plus simulation. 

Table 9. Sinking Plant Input and Output with All Electric Heat 

 
Units 

No Electric 
Heat 

All Electric 
Heat 

Feed in kg/h 83,333 83,333 
Electricity in kW 6,794 110,927 
Natural gas in kg/h 3,265 4,348 
Hydrogen out kg/h 7,134 9,306 
Electric heat demand kW 0 98,820 
Electric air heater power kW 0 86,573 
Electric heater tank power kW 0 23,633 
Power for syngas combustion air blower kW 1,858 5,828 

 
To enter these scenarios into the economic model, and so that the sinking and peaking cases 
could be directly compared, the Aspen results were scaled to the same baseline case that was 
used in the peaking analysis. Additionally, the economic model requires all inputs in terms of 
kilowatt, so energy content of the mass flows was calculated using the lesser heating value. The 
scaled and converted results are shown below for each of the two cases under consideration. 



 

32 

Table 10. Final Sinking Input and Output for Air Heaters Only 

 Units Baseline Heaters 
Feed in kW 433,971 433,971 
Electricity in kW 10,287 57,154 
Natural gas in kW 22,903 27,977 
Hydrogen out kW 232,074 261,150 

 
Table 11. Final Sinking Input and Output for All Electric 

 Units Baseline Heaters 
Feed in kW 433,971 433,971 
Electricity in kW 10,287 114,420 
Natural gas in kW 22,903 34,367 
Hydrogen out kW 232,074 304,598 

 
Unlike the peaking modification—which produced reduced efficiency—adding electric heat to 
the plant actually increases the total plant efficiency (energy in/energy out) from 49.7% to 50.3% 
(or 52.2% for the all-electric option). Each additional unit of energy input as electricity produces 
0.56 to 0.63 units of hydrogen energy output. Therefore, while providing a dispatchable load 
service to the local utility, the plant actually operates more efficiently. 

Capital Costs 
The electric heater capital costs came from a quote provided by Watlow for its largest, high-
temperature air duct heater. Based on that quote, a 2.2-MW air duct heater costs $250,000 and 
has an electricity to heated air conversion efficiency of 90%. The electric air duct heaters come 
in 2.2-MW increments. Additional unit savings are not expected with increased size, therefore a 
scaling factor of 0.9 was used. Finally, an installation factor of 2.47 was assumed for all cost 
estimates. Based on these assumptions, the total additional capital costs for electrically heating 
the combustion air came to $15.8 million. 

For the all-electric heat case, the same costing assumptions were used for electric duct heaters. 
The cost of adding electric heating to the olivine was estimated by taking the cost of the Inconel 
heating coil required for delivering the given heat and multiplying that cost by 2.5. This is a very 
rough way to approximate the system but it provides a starting point, because little is known of 
the actual design of such a heater. If the system is extremely close to economical or sensitive to 
capital cost then sensitivity studies will be required for this value. These assumptions yield an 
additional capital cost of $17.8 million. Detailed cost information for both scenarios can be 
found in Appendix D. 

Direct Gasifier Hybrid System 

The direct gasifier hybrid system concept is based on directly heated gasifier architecture. 
Directly heated gasifiers typically have a single combustion/reaction chamber and burn a small 
portion of the biomass feed to create heat. A source of pure oxygen is required for combustion if 
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the syngas is to be used for fuel production. Electrolysis could provide an alternative to an air 
separation unit, with the added benefit of producing an additional pure hydrogen stream. 

 

Figure 21. Direct hybrid system block diagram 

To date, some research has been conducted on the feasibility of combining electrolysis with 
gasification (Gassner and Marechal 2008). This research concluded that the economic feasibility 
of this combination was greatly dependent on the price of available electricity. The proposed 
hybrid system directly addresses electricity price dependence by running the electrolysis system 
intermittently. Electricity available during periods of low demand (low purchase price) is used by 
electrolyzers to produce oxygen and hydrogen for use by the gasifier or stored for later use. 
During periods of peak electricity demand, the stored oxygen is used to create syngas rather than 
for running the electrolyzers. 

Most directly heated gasifiers have a single combustion/reaction chamber and burn a small 
portion of the biomass feed to create heat. They typically are run at high pressure to improve 
overall plant efficiencies and reduce tar production. A source of pure oxygen is required for 
combustion if the syngas is to be used for fuel production so that nitrogen dilution does not affect 
the downstream processing. Currently, plants that use oxygen produce it with cryogenic air 
separation units. 

The biomass-to-hydrogen plant design for a direct gasifier is similar to that of the indirectly 
heated gasifier previously described. The major differences between the two plants involve the 
addition of the air separation equipment and biomass feeding/prep equipment. An inert gas 
stream is needed to pressurize lock-hoppers for feeding biomass into the reactor because the 
gasifier is run at high pressure (approximately 24 bar). The ASUs create a stream of pure 
nitrogen that typically is compressed and used for this purpose. Otherwise the same cleanup 
processes usually can be used. Figure 22 shows an envisioned biomass-to-hydrogen pathway 
using the direct gasifier architecture. 
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Figure 22. Direct gasifier biomass-to-hydrogen plant 

Electrolysis could provide an alternative to air separation units with the added benefit of 
producing a pure hydrogen stream. Key changes to the plant include replacing the entire ASU 
with an electrolyzer bank and replacing the LO-CAT/ZnO sulfur removal steps with a two-stage 
Selexol plant. The sulfur removal change was driven by the need for an inert gas for feed 
pressurization. Selexol is a well-proven process that uses a dimethyl ether-based solvent to 
remove both sulfur and CO2 from the gas stream. The envisioned plant is shown in Figure 23. 
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Figure 23. Direct gasifier hybrid concept 

Plant Design 
To replace a single ASU for oxygen production multiple electrolyzers are required. The largest 
commercial electrolyzer is produced by StatoilHydro (formerly NorskHydro). This electrolyzer 
produces a maximum flow rate of 174 kg/h of oxygen (43.6 kg/h of hydrogen). Based on 
published results and Aspen simulations, a 2,000 TPD fluidized-bed, biomass gasifier requires 
approximately 27,800 kg/hr of oxygen supplied. In this design, 160 electrolyzers running at full 
capacity would be needed to replace a single air separation unit. For the proposed plant to work, 
the Selexol process must produce enough CO2 to replace the inert N2 feed previously used for 
biomass-feed pressurization. A brief literature review found that this is in fact a possibility. 

Modeling 
To estimate the plant input and output values for a non-hybridized direct, fluidized-bed gasifier, 
an Aspen Plus model was developed based on Figure 25. The details of the model can be found 
in (Dean 2010). The values of biomass feed, oxygen required, water use, and electricity required 
obtained from this model are consistent with values published in other system simulations 
studies. Further refinement of the model could lead to slight changes in the plant input and 
output parameters, but should not be drastic enough to change the economic conclusions drawn 
in this study. 
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Given the oxygen needs of the plant, an electrolyzer bank could be designed. As noted, the 
electrolyzer bank will consist of 160 electrolyzers. Input and output parameters from an 
electrolysis plant of that size were determined from the previously released “Future Central 
Hydrogen Production from Grid Electrolysis” H2A analysis (U.S. Department of Energy, 
Hydrogen Program 2009). Based on the Aspen Plus biomass plant simulation and electrolysis 
H2A study, the plant input and output values for use in H2A could be successfully estimated for 
a combined system. The values for each individual plant and the hybrid case are given in 
Table 12. 

Table 12. Direct Gasifier Hybrid Operating Requirements and Costs 

  
Units 

Baseline 
Biomass 

Baseline 
Electrolyzers 

Hybrid 
System 

Capacity factor % 90 97 90 
Biomass in kg/kg H2 15.3 0 5.6 
Electricity in kWh/kg H2 0 44.7 25.4 
Cooling water gal/kg H2 170.6 293.9 174.1 
Process water gal/kg H2 5.3 2.9 3.9 
Total variable operating costs MM$/year $34.8 $117.8 $159.9 
Electricity out kWh/kg H2 3.1 0 0 
Hydrogen out kg/day 118,344 167,360 322,440 

 
Capital Costs 
A combination of sources was used to estimate the capital investments required for both a 
fluidized-bed gasifier biomass-to-hydrogen case and for the proposed hybrid system. All 
electrolyzer costs were calculated using the future central hydrogen production from electrolysis 
case mentioned above. The majority of costs associated with the fluidized-bed gasifier, ASU, and 
feed preparation were taken from a recent publication (Jin et al. 2009). Gas cleanup costs were 
scaled based on previous system studies completed at NREL (Spath et al. 2005). Selexol prices 
were drawn from Cost and Performance Baseline for Fossil Energy Plants (National Energy 
Technology Laboratory 2007). The steam cycle and cooling costs were scaled from the 
2005 Biomass to Hydrogen study based on a pinch analysis of the Aspen Plus. An overview of 
the costs can be found in Table 13. Detailed capital cost development information for the 
baseline fluidized-bed gasifier plant can be found in Appendix E and Appendix F. 

Table 13. Direct Gasifier Capital Costs 

Plant Area Baseline Hybrid 
Feed preparation and handling $27,897,950 $27,897,950 
Gasification, tar reforming, quench $22,723,289 $22,723,289 
Air separation unit or electrolyzer bank $21,339,385 $99,162,176 
Gas cleanup $29,906,771 $58,701,843 
Shift and pressure swing adsorption $18,626,072 $18,626,072 
Steam system and power generation $20,423,378 $20,423,378 
Cooling water and other utilities $2,113,753 $3,713,021 
Buildings and structures $6,368,900 $6,368,900 
Total $149,399,497 $257,616,627 
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Economic Model 

The hybrid system concepts studied herein respond dynamically to fluctuations in the energy 
market, either absorbing or providing electricity on demand. To simulate this switching, a binary 
model was created for each proposed system based on a specified peaking or sinking duty. Duty 
is defined as the percentage of hours per year during which either sinking or peaking mode is 
used. The models were created in Microsoft Excel, and switch between a baseline mode and one 
of the hybrid modes discussed above. 

Leveling of the electricity supplied to the grid from wind energy plants while producing 
hydrogen fuel is the goal of these concepts. However, the cost of electricity was used to 
determine the hybrid duty cycle instead of wind availability so that the economic promise of the 
concepts could be quantified.  

Regional transmission organization (RTO) day-ahead prices were used for the cost-of-electricity 
when available. These prices represent the market value of electricity to the utilities in an area on 
an hourly, averaged basis. The hybrid systems must be profitable at this low price point to be 
able to trade electricity on the market. When day-ahead market information was unavailable, 
load lambda data was used in its place. Load lambda data gives the cost of production of one unit 
of electricity to the utility for each hour of the year. 

Based on GIS research presented above (see Figure 6 and Figure 7), three areas appear to have 
promising quantities of both wind and biomass. These areas are the Northeast, the Midwest, and 
the Northwest. Cost-of-electricity data for each location is shown in Figure 24. 
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Figure 24. Regional price duration curves 

Each profile shown above was based on 2007 year-end data. Costs for the Northeast were based 
on NE ISO day-ahead data. Midwest ISO data was directly available from the regional office 
itself. To estimate the Northwest, where no RTO currently exists, load lambda data was used 
from the Northwest Interface. More detailed information on the grid data can be found in 
Appendix G. 

At current levels, wind penetration will not dramatically alter the cost of electricity on the 
regional market. In the near future wind will continue to be balanced by additional natural-gas 
turbines to provide the majority of peaking electricity. Based on the most recent Energy 
Information Administration (EIA) 2009 Annual Energy Outlook (AEO) report (U.S. Energy 
Administration 2009), electricity prices are expected stabilize at current levels and then remain 
unchanged for several years. Looking further ahead, the AEO predicts that the real cost of 
electricity will increase only $0.014 to $0.018 per kilowatt-hour between 2015 and 2030. This 
level of price increase is addressed in the sensitivity analysis found at the end of the report. In 
June 2009, the House of Representatives passed the American Clean Energy and Security Act of 
2009 (ACESA). This is an extremely complex bill that attempts to regulate greenhouse gases 
with a combination of markets, efficiency programs, and incentives. Although the bill has the 
potential to change the rate of renewable energy deployment, it is not expected to significantly 
affect the AEO electricity projections (U.S. Department of Energy 2009). 

Modern grid power can be roughly divided into baseload and peaking electricity. Baseload 
power is produced by “always-on” generation facilities like coal and nuclear plants. This 
currently is the lowest-cost electricity available. Peaking electricity for the most part is provided 
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by natural-gas turbines, which can be turned off and on quickly. Other more expensive sources 
of electricity such as wind and solar, however, also compete in at higher electricity prices. 

For proper operation of the hybrid systems studied, the distribution of peaking or sinking needs 
versus baseload demand must be heterogeneous. Figure 25 shows the time distribution of costs 
over the course of the year for the Northeast. Because the high-priced electricity (shown in red) 
and low-cost electricity (shown in dark blue) occur for only a few hours at a time and appear 
relatively predictable, the switching proposed should be reasonable from a system-control 
standpoint. 

 

Figure 25. Time diagram of electricity cost 

To assess the market potential of each of the proposed hybridizations, the yearly inputs and 
outputs for each plant were entered into the H2A Analysis Tool10 along with applicable capital 
costs. The resulting cost of hydrogen produced, in dollars per kilogram, was compared to both 
the Future Central Hydrogen Production via Biomass Gasification H2A results and also the 
Future Central Hydrogen Production from Natural Gas without CO2 Sequestration H2A results. 
If the cost of hydrogen produced by a hybrid system is less than that determined for the Future 
Central Biomass to Hydrogen case, then the cost of additional equipment (incremental costs) for 
hybridization were fully offset by added income or efficiency that resulted from the 
hybridization. 

The H2A analysis, as it was run, makes several assumptions including that current electricity 
prices are representative of those at the actual time of plant construction, and that sufficient 
market demand for hydrogen exists so that all product can be sold. The major economic 
assumptions are summarized in Table 14. All additional assumptions for maintenance, land, and 
financial variables were taken directly from the existing, published Future Biomass to Hydrogen 

                                                 
10 Additional information is available at http://www.hydrogen.energy.gov/h2a_analysis.html. Accessed November 
8, 2009. 
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or Future Central Electrolysis H2A cases. Additionally, no price is associated with carbon 
emissions or carbon avoided and no value is added due to the dual-mode operation functionality. 

Table 14. Economic Assumptions 

Parameter Value 
Internal rate of return (after tax) 10% 
Debt/equity 0%/100% 
Plant life 40 years 
Depreciation MACRS 
Depreciation recovery period 20 years 
Construction period 
First year 
Second year 

2 years 
75% (25% for electrolysis) 
25% (75% for electrolysis) 

Start-up time 
Revenues 
Variable costs 
Fixed costs 

12 months 
50% 
75% 
100% 

Working capital 15% of total capital investment 
Inflation rate 
Total taxes 
Decommissioning costs 
Salvage value 

1.9% 
38.9% 

10% of depreciable capital 
10% of total capital investment 

 
The last assumption, that carbon has no value, was taken into account separately as an 
adjustment to the H2A results. The amount of CO2 equivalent (CO2e) emissions per kilogram of 
hydrogen produced was tracked for all cases analyzed. The emissions for each hybrid system 
vary not only with the type of hybridization but also with the amount of time spent in each mode 
of operation. Values for these emissions are given with the detailed results below. A summary of 
the baseline values is shown in Table 15. 

Table 15. CO2e Emissions per Kilogram of Hydrogen Produced 

Process kg CO2e/kg H2 
SMR without CO2 capture 11.2 
Biomass to hydrogen 1.2 
Hybrid systems Varies by system 

 
In addition to the CO2e emissions from the plant, we assumed there was value associated with 
carbon emissions avoided due to the renewable nature of any fuel or electricity production. 
Based on the regional average grid mix, anywhere from 483 kg to 724 kg of CO2e are emitted 
per kilowatt-hour of electricity produced. Table 16 shows the grid production mix and 
corresponding emissions for each location studied. One kilogram of hydrogen has the 
approximate energy equivalent of one gallon of gasoline. Because hydrogen can be used in fuel 
cells with much higher efficiency, however, one kilogram of hydrogen actually could offset 
about two gallons of gasoline. Burning two gallons of gasoline produces 17.84 kg CO2e. These 
numbers were used as carbon credits for each kilogram of hydrogen or megawatt-hour of 
electricity produced. 
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Table 16. Electricity Greenhouse Emissions by Region 

 Kilograms of CO2e 
per Kilowatt-Hour a NE ISO b MISO c NW Interface d 

Coal 952.5 15.0% 52.2% 58.0% 
Oil/petroleum 893.1 18.0% 9.3% 1.0% 
Natural gas 599.2 30.0% 23.9% 19.7% 
Nuclear — 28.0% 7.9% 1.0% 
Renewable — 9.0% 6.7% 20.3% 
Average kilograms of CO2e per 
kilowatt-hour — 483.4 723.5 679.4 

a. Based on HyARC Energy Constants and Assumptions that are part of the H2A Analysis Tool. 
b. Based on market reports available at http://www.iso-ne.com/. Accessed November 7, 2009. 
c. Based on market reports available at http://www.midwestiso.org/. Accessed November 8, 2009. 
d. Approximation based on http://www.pacificorp.com/File/File89760.pdf. Accessed November 8, 2009. 

 
Results 

Neither the indirect gasification–based hybrid system nor the direct gasification–based hybrid 
system produced hydrogen for less cost than a non-hybrid plant could. In all cases a premium 
was paid for hybridization that could not be offset by the increased functionality. The results for 
each system and the non-hybrid baseline are described below. 

Indirect Hybrid System—Peaking 
The proposed system switches between hydrogen production and electricity production (peaking) 
driven by the cost of electricity available on the grid. Based on discussions with Xcel Energy, a 
peaking duty of 20% was used for the analysis. Table 17 summarizes the major model inputs by 
region. A contract rate was used for any peaking electricity produced by the plant. This is 
common practice in the current electricity market and provides a premium price for dispatchable 
peaking assets. 

Table 17. Indirect Hybrid System—Peaking H2A Inputs 

 NE ISO MISO NW Interface 
Peaking duty 20% 20% 20% 
Peaking electricity value (¢/kWh) 14.0 12.0 11.5 
Utility electricity cost (¢/kWh) 5.92 3.62 3.69 
Utility natural gas cost ($/nm3) 0.32 0.32 0.32 
Cost of biomass ($/ton)a 48.83 48.83 48.83 
a. Value taken from the Biomass 2009 Multi-Year Research, Development and Demonstration 
Plan. The 2012 target value is $50.70 per ton of dry woody biomass in 2007 dollars. Taken to 
2005 dollars with 1.09% inflation, this yields $48.83 per ton. Available at 
http://www1.eere.energy.gov/biomass/pdfs/mypp_may2009.pdf. Accessed November 8, 2009. 

 
The cost of hydrogen production in each area was calculated based on the economic inputs listed 
above and the plant inputs and outputs previously discussed. The results are shown in Table 18 
along with the cost of hydrogen production for a baseline, non-hybridized biomass-to-hydrogen 
plant and a steam methane reforming (SMR) plant. 

 

http://www.iso-ne.com/�
http://www.midwestiso.org/�
http://www.pacificorp.com/File/File89760.pdf�
http://www1.eere.energy.gov/biomass/pdfs/mypp_may2009.pdf�
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Table 18. Indirect Hybrid System—Peaking Results 

 $/kg H2 
NE ISO 

$/kg H2 
MISO 

$/kg H2 
NW Interface 

SMR 1.40 1.40 1.40 
Biomass-to-hydrogen baseline 1.64 1.64 1.64 
Gas-turbine hybrid system 1.84 1.86 1.88 
ICC hybrid system 1.81 1.85 1.87 

 
Regardless of whether gas turbine or a swinging steam cycle is used, the additional capital costs 
of hybridization cannot be justified today in any of the locations studied. There is a premium of 
$0.17 to $0.24 on hydrogen produced by the proposed hybrid system compared with a non-
hybrid biomass-to-hydrogen gasification plant. Areas with higher-priced electricity move this 
hybridization closer to economic feasibility; the best results were found in the Northeast. 

The previous results assumed that carbon has no value. As carbon emissions are controlled, 
carbon costs could be a significant factor. If this is taken into account, then the hybrid system 
results substantially improve. When the hybrid plant is producing electricity the plant uses no 
natural gas or electricity. When the plant is producing hydrogen, however, natural gas is used for 
balancing the heat duty of the plant and electricity is required to run compressors. Taking the 
differences in carbon emissions into account, a value of $34 to $40 per metric ton of CO2e makes 
the proposed hybrid cost competitive depending on the location and power output of the system. 
At $37 per metric ton of CO2e, the simple-cycle hybridization becomes cost competitive with a 
methane steam reforming plant in the Northeast. At $34 per metric ton of CO2e the combined-
cycle system becomes cost competitive with SMR in the Northeast. 

It is important to note that the baseline biomass-to-hydrogen plant requires only approximately 
$23 to $25 per metric ton of CO2e value to be cost competitive with hydrogen produced by SMR. 
This means that peaking hybridization will be economically promising only when there is some 
value placed on the additional functionality of dual-mode operation. 

A sensitivity analysis was performed for both the gas turbine and integrated combined-cycle 
peaking systems to characterize the effect of various technical and economic assumptions. Figure 
26 and Figure 27 show the results for both the price of hydrogen and the greenhouse gas 
emissions. The sensitivity analysis for the gas turbine system showed that capital costs, the cost 
of biomass, and the price at which peaking electricity can be sold are key inputs. Capital costs—
when varied +/-30%—cause the cost of hydrogen to vary by $0.25. The cost of biomass was 
varied from $40 per ton to $60 per ton based on projections in the multi-year program plan 
(MYPP) (based on HyARC Energy Constants and Assumptions that are part of the H2A 
Analysis Tool), and causes the cost of hydrogen to vary by less than $0.20. The price of peaking 
electricity and the plant capacity factor also cause fluctuations of less than $0.20. Changes in the 
cost of electricity bought by the plant, the cost of natural gas, peaking power output, and turbine 
peaking duty cause hydrogen costs to vary less than 5%. 
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Greenhouse gas emissions are affected by the gas-turbine peaking duty. During hydrogen 
production, a natural gas trim is used to maintain the tar cracker catalyst regenerator temperature. 
When producing peaking electricity, the natural gas trim is replaced with synthesis gas. This 
switch means that higher peaking duty results in less natural gas use and therefore fewer net 
emissions. 

 

Figure 26. Gas-turbine peaking sensitivity analysis, Northeast ISO 

For the integrated combined-cycle peaking system the results were significantly more volatile 
than for the gas-turbine system. Most of the trends discussed for the gas-turbine system held but 
were amplified. One difference was that the peaking duty had a much more significant effect on 
the cost of hydrogen, resulting in variations of up to $0.22. This shows that the cost of hydrogen 
produced is extremely sensitive to the amount of peaking power produced by the system. 
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Figure 27. Integrated combined-cycle peaking sensitivity analysis, Northeast ISO 

Indirect Hybrid System—Sinking 
The proposed system switches between hydrogen production with syngas recycling for gasifier 
heat, and hydrogen production with electrical heating (sinking) to decrease or fully replace the 
syngas recycle. This sinking ability can best be described as a dispatchable load or demand from 
the viewpoint of the grid. Based on discussions with Xcel Energy, wind-generated electricity 
costs oftentimes can be negative, and having a dispatchable load would provide a valuable 
service to the utility. 

No similar system was found to use for comparison, therefore a sinking duty of 20% was used as 
a starting point for the analysis. Table 19 summarizes the major economic model inputs by 
region. Unlike peaking electricity for which a contract rate was used for electricity produced by 
the plant, the sinking analysis simply used the average cost of electricity for the cheapest 20% of 
hours as the sinking electricity cost. The utility electricity cost was the average of the remaining 
80% of the hours. These costs of electricity would be valid if a plant operator used accurate day-
ahead energy market forecasts to schedule plant operation. 

Table 19. Indirect Hybrid System—Sinking H2A Inputs 

 NE ISO MISO NW Interface 
Sinking duty 20% 20% 20% 
Sinking electricity cost (¢/kWh) 4.35 2.20 2.18 
Utility electricity cost (¢/kWh) 7.05 4.87 4.69 
Utility natural-gas cost ($/nm3) 0.32 0.32 0.32 
Cost of biomass ($/ton) 48.83 48.83 48.83 
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Given the economic inputs above, and the plant inputs and outputs previously discussed, the cost 
of hydrogen production in each area was calculated. The results are shown in Table 20 along 
with the cost of hydrogen production for a baseline, non-hybridized biomass-to-hydrogen plant 
and a steam methane reforming plant. 

Table 20. Indirect Hybrid System—Sinking Results 

 $/kg H2  
NE ISO 

$/kg H2 
MISO 

$/kg H2 
NW Interface 

SMR 1.40 1.40 1.40 
Biomass-to-hydrogen baseline 1.64 1.64 1.64 
Electric air heater hybrid system 1.75 1.67 1.68 
All electric heat hybrid system 1.77 1.68 1.67 

 
There is a $0.03 to $0.13 premium on hydrogen produced by the proposed hybrid system 
compared with a non-hybrid biomass-to-hydrogen gasification plant. The additional capital costs 
of the sinking hybridization are not fully offset by additional revenue in any of the locations 
studied. The marginal costs found, however, are small enough that it is difficult to draw any 
definitive conclusion. Areas with lower-cost electricity move this hybridization closer to 
economic feasibility with the best results found in the Northwest. 

Because the premium is small (about 5%) it might be acceptable in the long term. Recent studies 
have shown that there is inherent value added—or welfare effects—for electricity storage 
capacity (Sioshansi et al. 2009). Whether similar value is added by the proposed sinking hybrid 
is unknown. A more likely parallel would be the idea of “interruptible customers” which get 
discounted electricity rates in return for intermittent power supply. A similar contractual 
agreement could be envisioned for the proposed hybrid, in which discounted electricity rates 
would be provided in return for intermittent usage. 

The proposed system is not a direct competitor with storage systems such as pumped hydro or 
compressed air energy storage (CAES). Energy storage systems attempt to profit by market 
arbitrage (selling electricity back to the grid at a price greater than that at which it was bought) 
whereas the proposed hybrid system sinks cheap electricity into transportation fuel. This could 
be considered cross-market arbitrage and the most similar system to this would be electrolysis. 
Compared to electrolysis, the proposed system is significantly less expensive and has the added 
benefit of running without electric heat when electricity costs are too high.11

Assuming that all sinking electricity is renewable and taking the additional differences in carbon 
emissions into account, a value of $26 to $35 per metric ton of CO2e makes the proposed hybrid 
cost competitive depending on the location and amount of dispatchable demand of the system. At 
$27 per metric ton of CO2e, the combustion air heater hybridization becomes cost competitive 
with a methane steam reforming plant in the Northwest. At $26 per metric ton of CO2e, the all-
electric heat system becomes cost competitive with SMR in the Northwest. 

 

                                                 
11 Based on $3.24/kg hydrogen as reported in the “Future Central Hydrogen Production from Grid Electrolysis 
version 2.1.1” H2A analysis. Available at http://www.hydrogen.energy.gov/h2a_prod_studies.html. Accessed 
November 8, 2009. 

http://www.hydrogen.energy.gov/h2a_prod_studies.html�
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Again, the baseline biomass-to-hydrogen plant only requires approximately $23 to $25 per 
metric ton of CO2e value to be cost competitive with hydrogen produced by SMR. This means 
that peaking hybridization will be economically promising only when there is some value placed 
on the additional functionality of dual-mode operation. 

To characterize the effect of various technical and economic assumptions, a sensitivity analysis 
was performed for both the sinking systems. Figure 28 and Figure 29 show the results for both 
the price of hydrogen and greenhouse gas emissions. The sensitivity analysis for both heating 
systems showed that capital costs, the cost of biomass, and the plant capacity factor for are key 
inputs. Capital costs, when varied +/- 30%, cause the cost of hydrogen to vary $0.18. The cost of 
biomass was varied from $40 per ton to $60 per ton based on projections in the MYPP (based on 
HyARC Energy Constants and Assumptions that are part of the H2A Analysis Tool) and causes 
the cost of hydrogen to vary by less than $0.15. Changes in the sinking duty, the added hydrogen 
production due to sinking, the cost of natural gas, and the cost of electricity cause hydrogen costs 
to vary by less than 3%. 

From the sinking duty sensitivity analysis, it appears that an increased sinking duty would be 
preferable to the 20% assumption made. Minimum hydrogen production prices occur when the 
electric heating systems are run approximately 40% of the time. This increases plant hydrogen 
production and decreases plant GHG emissions. 

 

Figure 28. Air heater sinking sensitivity analysis, Northwest Interface 
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Figure 29. All-electric sinking sensitivity analysis, Northwest Interface 

Direct Gasifier Hybrid System 
Based on the previously described model inputs and outputs, an H2A analysis was completed to 
determine the baseline cost of hydrogen produced by a directly heated gasification plant that uses 
electrolysis regardless of electricity cost, and the cost of hydrogen for a directly heated 
gasification plant that uses a traditional ASU. Table 21 summarizes the major model. The plant 
was assumed to be located in the Midwest ISO region. 

Table 21. Direct Hybrid System—H2A Inputs 

 MISO 
Electrolyzer duty (%) 100 
Utility electricity cost (¢/kWh) 4.33 
Cost of biomass ($/ton) 48.83 

 
The results of the analysis, along with the associated carbon emissions, are listed in Table 22. 
Costs for production of hydrogen via SMR and for an electrolysis plant only also are shown for 
reference purposes. 

At $2.32 per kilogram, hydrogen produced by a direct gasifier/electrolyzer hybrid plant is 
significantly more expensive than that produced by SMR. Electricity costs account for 36.9% of 
the overall cost of hydrogen produced (or $0.86). Therefore, if electricity costs could be halved 
by intermittent operation, then the savings would bring the cost of hydrogen to $1.89 per 
kilogram of hydrogen. At this price, the hybrid system could compete with hydrogen produced 
by a standard direct-gasification plant. It’s important to note that these costs are approximately 
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15% greater than the $1.64 per kilogram of hydrogen estimated for the indirectly heated baseline 
gasification plant used for comparison of the indirect hybrid analysis (see Table 20). 

Table 22. Cost of Hydrogen and CO2e Emissions from Direct Gasification 
 $/kg H2 Net CO2e/kg H2 

SMR $1.40 -6.8 
Biomass gasification $2.13 -19.6 
Electrolysis $2.59 14.5 (-17.8) 
Electrolysis and gasification $2.32 0.24 (-18.2) 

 
Unfortunately, to halve the cost of electricity used by the plant, the electrolyzer bank could be 
run only at the bottom of the area’s price-duration curve. The previous sinking analysis assumed 
that extra electricity was used in only the cheapest 20% of hours in a year, which resulted in half-
price sinking electricity. Intermittent operation significantly adds to plant capital costs. The 
electrolyzer bank must be increased in size drastically for intermittent operation so that it 
produces excess oxygen for storage. The additional electrolyzer costs, in addition to the added 
oxygen storage costs and operating expenses, make the potential electricity savings difficult to 
justify. 

In addition to high production costs, carbon emissions actually increase relative to biomass 
gasification for this hybridization. If upstream emissions for electricity production are taken into 
account, electrolysis and this proposed hybrid are both net CO2 emitters. This makes their 
justification by carbon value impossible unless only renewable electricity is used for operation 
(those values are shown in parentheses in Table 22). Since renewable wind energy is inherently 
intermittent, it is unreasonable to assume that renewable electricity is used without adding the 
necessary equipment for intermittent operation. One exception would be the use of hydroelectric 
power for the systems. 

Similar to the other hybrid systems investigated, hybridization results in a price premium. There 
must be some additional justification for hybridization, such as welfare effects or utility 
demands. The baseline biomass-to-hydrogen case with an ASU requires only $35 per metric ton 
of CO2e to be cost competitive with SMR-produced hydrogen. Figure 30 shows the results of a 
sensitivity analysis performed on the baseline biomass to hydrogen via direct gasification model. 
Similar to the previous gasification systems, capital cost uncertainties have the greatest effect on 
the price of hydrogen produced. The sell price of electricity, electricity production, and water 
consumption have very little effect on overall economics of the plant. 
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Figure 30. Directly heated gasifier baseline sensitivity analysis 

In contrast to the baseline plant, electrolyzer-based hybrid system economics are extremely 
sensitive to the cost of electricity (see Figure 31). Fluctuations of plus or minus $0.01 in the cost 
of electricity cause the price of hydrogen to fluctuate more than $0.25 per kilogram. Lines are 
included for both electrolysis alone and the baseline biomass plant for comparison. If the price of 
electricity were to drop below $0.04 per kilowatt-hour then the proposed hybrid system could 
economically compete with a non-hybrid biomass-to-hydrogen plant. This low price level is 
unlikely, however, and any energy-market fluctuations would have a dramatic effect on 
economic viability. 
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Figure 31. Directly heated gasifier hybrid system sensitivity analysis 

Another biomass gasification, electrolysis hybridization for hydrogen production study was 
found after research began (Hutleberg and Karlsson 2009). The results of that study show a 
similar spread between gasification, electrolysis, and hybrid costs of hydrogen; however, the 
study was performed on a much smaller scale plant (approximately 37,000 kg/day H2). Based on 
a conversion of the research results (in Swedish Krona) to dollars, the prices for hydrogen by 
gasification, electrolysis, and hybridization were $5.55, $6.15, and $5.85 per kilogram of 
hydrogen produced, respectively. 

Further intermittent simulation was not performed on the concept after these initial findings. For 
the use of electrolysis to make sense in this setting, there must be a significant benefit from the 
ability to operate intermittently. One envisioned possibility is to directly couple the plant with a 
stranded wind resource so that wind energy can be used to produce transportable fuel. This 
would be especially promising if the “stranded” wind resource was near a major trucking route 
(fuel demand). Fuel costs for such a system would be significantly greater than those of an ASU-
based system, however, and only are justifiable if shipping of fuel to the site was difficult. 
Another option would be to use enriched air rather than pure oxygen for gasification. This would 
prevent the production of fuel but would be acceptable for power production and the 
electrolyzers could produce a slipstream of hydrogen fuel. 

Conclusion 

The indirect gasification concepts studied could be cost competitive in the near future as value is 
placed on controlling carbon emissions. Carbon values of slightly less than $40 per metric ton of 
CO2e make the systems studied cost competitive with steam methane reforming to produce 
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hydrogen. A non-hybrid biomass-to-hydrogen plant will be more cost competitive in general, 
however, so there must be some additional value placed on peaking or sinking for these plants to 
be economically attractive. This additional value is likely to become a reality as additional 
intermittent renewable energy sources—such as wind—are added to the national grid. 

For the proposed peaking system, increased electricity production dramatically improves the 
economics so the additional complexity of a swinging integrated combined-cycle system could 
be justified. Further work is needed, however, to investigate the dynamic response and control of 
the proposed plants. Development of control strategies for these plants would be a significant 
undertaking and this topic was not addressed by the steady-state models used in this study. 

The direct gasification concept studied is unlikely to be cost competitive in the near future. The 
additional electrolyzer costs make the possible electricity savings difficult to justify. Based on a 
direct replacement of the ASU with electrolyzers, hydrogen can be produced for $2.32 per 
kilogram. Using grid electricity, however, the hybrid system is a net CO2e emitter. For the use of 
electrolysis to make sense in this setting there must be a significant benefit to the ability to 
operate intermittently. 

Future Work 

As mentioned above, hybrid biomass systems encompass a wide range of possibilities. 
Significant opportunities exist for future work including the following. 

Determining whether there is inherent value added in electricity sinking/peaking that isn’t 
directly considered by this analysis. Sioshansi et al. looked at the value of electricity 
storage in detail (Sioshansi et al. 2009) however; the market arbitrage they studied is 
significantly different from turning electricity into fuel. What is the value of “cross-
market” arbitrage? 

Coal-biomass hybridization research received significant interest from multiple industry 
reviewers. Some research has been done on coal-biomass hybridization, as discussed in 
the literature review, but there are significant possibilities for future work including but 
not limited to the following. 

A detailed techno-economic comparison of combined coal and biomass gasification 
systems versus coal alone or biomass alone. 

Investigation of thermally integrated coal power plant and biomass/bio-oil 
gasification systems. 

A comparison of the economic and welfare effects of the various methods for 
biomass and coal mixing including gasification, co-feed into steam boiler, bio-oil 
co-feed into steam boilers, and separate combustion. 

Industry reviewers expressed skepticism about the economic rationale for hydrogen 
production. Thus, an add-on study with economic comparison if liquid fuels such as 
Fischer-Tropsch fuels were produced instead of hydrogen would be informative. 
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The study focused specifically on near-term hybridization possibilities. A similar literature 
review and brainstorming process involving technologies on the horizon such as 
thermochemical hydrogen production cycles from water or oceanic biomass potential 
could yield interesting results. 

The present study assumed biomass gasification plants that were optimized for hydrogen 
production and only producing electricity intermittently. Study of an inverse system in 
which a hydrogen slipstream is produced from a baseload power generation plant would 
yield significantly different results. 

Price-duration curves were needed for each region studied. Predicting the effect that 
increased renewables on the grid would have on these curves could not be done with 
existing data. A study to create an “ideal” price-duration curve that could be used for 
similar studies would be extremely useful. 

Further refinement is needed on the ICC electricity-production estimates and design because 
the ICC Aspen model was not a detailed plant model. 

Determining how the system would behave dynamically when switched between modes of 
operation could be examined. Would the switch between hydrogen production and power 
production or electric heating and syngas recycling cause overall system instability? If 
the system is stable, how long would switching take and what are the thermal cycling 
effects? 

Development of control strategies for each system could be studied. This can be done only 
after dynamic response is determined and is especially significant for the proposed 
integrated combined-cycle peaking concept. 
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Appendix A. Numerical Idea Matrix 
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Appendix B. Indirect Gasifier Aspen Plus Simulation Details 

All Aspen Plus simulations were modifications to the previous Wood to Hydrogen Using 
Indirectly Heated Gasifier model available at http://devafdc.nrel.gov/biogeneral/Aspen_Models/. 
Specifically, the design for “goal” tar reforming technology was used. Every attempt was made 
to maintain the base model thermal integration and minimize changes to the model. Details of the 
modifications made are given below. 

GE 6FA Simple Cycle Gas Turbine 
The following modifications were made to the existing Wood to Hydrogen Aspen model. 

The natural gas trim to the tar reformer catalyst regenerator (stream 427) flow was set to zero 
and the NGTRIM design spec was deactivated. 

The PSA system and all downstream flows for hydrogen compression were set to zero and 
deactivated. 

Stream 420 that normally would flow through the PSA system instead was routed to the tar 
reformer catalyst regenerator R-204. 

The gas-turbine model developed separately was inserted into the model. 

Syngas stream 326 (directly after the LO-CAT reactor) was split to the water-gas shift 
reactors and the turbine respectively. Any remaining syngas was considered waste. The 
following constraints were met with design specifications. 

TARFEED—Adjusted the split fraction until the difference between the catalyst 
regenerator and the tar reformer was 200 °F. 

TBFEED—Adjusted the split fraction until 6FA combustor temperature reached the 
specified 1,288 °C. 

A heat exchanger was added to the turbine exhaust so that lost heat to the plant steam turbine 
from H-405 and H-407 heat exchangers due to less flow through the water-gas shift is 
exactly replaced by the turbine exhaust. This was controlled with calculator block 
“THEAT.” 

 

Figure B.1. Syngas stream 326 split 

Tar Feed
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8%

Stream 326 Split
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A screen capture of the gas turbine inputs and outputs is provided as Figure B.2, below. 

 

Figure B.2. Gas turbine inputs and outputs 

The final plant power specifications for this scenario are summarized in Table B.1. 

Table B.1. Plant Power Generation 

 HP MW 
WPLANT 47,442 35.4 
WGEN -43,154 -32.2 
WTURB -100,935 -75.3 
WNET -96,647 -72.1 

 
GE F-Class Simple-Cycle Gas Turbine 
The following modifications were made to the case v024 Aspen model. 

Syngas stream 326 (directly after the LO-CAT reactor) was split to the water-gas shift 
reactors and the turbine respectively. The following constraints were met with design 
specifications. 

TARFEED—Adjusted the split fraction until the difference between the catalyst 
regenerator and the tar reformer was 200°F. Stated another way, stream 107 was 
maintained at approximately 1,791°F. 

TBFEED—All but available syngas remaining after the TARFEED design 
specification was met was sent to the gas turbine. Additional calculators were 
added so that the air and steam to fuel ratios remained constant with the excess 
fuel flow. 
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Figure B.3. Syngas stream 326 split 

Please note that 5,000 lb/hr of the syngas stream still was sent to waste in this case. The Biomass 
to Hydrogen model recently was updated to include new yield correlations for the gasifier, based 
on data collected in the Thermochemical Process Development Unit (Kinchin and Bain 2009). 
The updated model requires raw syngas to be diverted and combusted to supplement the heat 
delivered to the gasifier by the char combustor. The 5,000 lb/hr waste stream effectively adjusts 
the energy flow in the current model to align with (Kinchin and Bain 2009) findings. A screen 
capture of the gas turbine inputs and outputs is supplied as Figure B.4, below. 

 

Figure B.4. Gas turbine inputs and outputs 

The final plant power specifications for this scenario are summarized in Table B.2. 

Table B.2. Plant Power Generation 

 HP MW 
WPLANT 47,435 35.4 
WGEN -43,163 -32.2 
WTURB -108,071 -80.6 
WNET -103,799 -77.4 

Tar 
Feed
21%

Turbine
76%

Waste
3%

Stream 326 Split
(% mass flow)
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Water-gas Shift Shutdown 
The following modifications were made to the case v025 Aspen model. 

Syngas stream 326 (directly after the LO-CAT reactor) was split to the tar reformer catalyst 
regenerator and the turbine respectively. The following constraints were met with design 
specifications. 

TARFEED—Adjusted the split fraction until the difference between the catalyst 
regenerator and the tar reformer was 200°F. 

TBFEED—All but available syngas remaining after the TARFEED design 
specification was met was sent to the gas turbine. Additional calculators were 
added so that the air and steam to fuel ratios remained constant with the excess 
fuel flow. 

 

Figure B.5. Syngas stream 326 split 

Please note that 2,268 kg/hr (5,000 lb/hr) of the syngas stream still was sent to waste in this case. 
The Biomass to Hydrogen model recently was updated to include new yield correlations for the 
gasifier, based on data collected in the Thermochemical Process Development Unit (Kinchin and 
Bain 2009). The updated model requires raw syngas to be diverted and combusted to supplement 
the heat delivered to the gasifier by the char combustor. The 2,268 kg/hr waste stream effectively 
adjusts the energy flow in the current model to align with (Kinchin and Bain 2009). The final 
plant power specifications for this scenario are summarized in Table B.3. 

Table B.3. Plant Power Generation 

 HP MW 
WPLANT 47,435 35.4 
WGEN -43,163 -32.2 
WTURB -114,652 -85.5 
WNET -110,380 -82.3 

 

Tar Feed
16%

Turbine
81%

Waste
3%

Stream 326 Split
(% mass flow)
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Appendix C. Aspen Plus Gas Turbine Model Details 
Table C.1. GE Gas Turbine Specifications 

 MS6001FA 
Output (MW) 75.9 (90) 
Heat rate (kJ/kWh) 10,332 
Pressure ratio 15.7:1 
Mass flow (kg/sec) 204 
Turbine speed (rpm) 5,254 
Exhaust temp (°C) 603 
Turbine inlet temp (°C) 1,288 

 
Based on specifications from GE (summarized in Table C.1), a simple Aspen Plus model was 
constructed of the 6FA simple-cycle gas turbine. The flow sheet is shown in Figure C.1 below. 

 

Figure C.1. Simple gas turbine flow sheet 

The model was calibrated in the following manner. 

The heat rate was set so that 10,332 kJ/kWh of methane (lower heating value) to the 
RGIBBS burner at ambient temperature and 15.7 bar pressure. 

The mass flow through the compressor was set to 204 kg/sec of air with a pressure ratio of 
15.7. 

A calculator block was specified that sets the total “BURNGAS” flow to 204 kg/sec (vents 
compressor gas as needed). 

The compressor isentropic efficiency was adjusted until burner temperature reached 1,288°C. 

The turbine isentropic efficiency was adjusted until the outlet temperature was 603°C. 

The compressor mechanical efficiency was adjusted until the power output was 
approximately 75.9 MW. 
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Table C.2. Aspen Plus Natural Gas Model Specifications 

 Compressor Turbine 
Mech efficiency (%) 93 100 
Isentropic process efficiency (%) 77.8 92.5 
Compression ratio 15.7 – 
Outlet pressure (psia) – 14.7 

 
Table C.2 summarizes the natural gas compressor and turbine settings used for all simulations. 
To run the turbine on hydrated syngas, the following additional steps were taken. 

The feed was adjusted until the burner temperature reached the target temperature of 
1,288°C. 

The calculator block was modified so that up to 14% extra flow (more than the 204 kg/sec 
limit) could be passed through the turbine. 

The compressor pressure ratio was adjusted so that the volumetric flow through the turbine 
remained the same as the natural gas basecase. 

 

Figure C.2. Natural gas turbine flow sheet 

To estimate the combined-cycle outputs the following additional steps were taken. 

An additional heater block was inserted in the turbine exhaust stream that took the exhaust 
temperature to 132°C. 

The heat duty of this heater block was taken times the efficiency of 0.40 to estimate the ideal 
steam cycle power available. 
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Appendix D. Electric Heater Capital Costs 

Table D.1 presents the cost estimate for adding only electric combustion air preheating to the 
gasifier plant. 

Table D.1. Cost Estimate 

Cost of 2.2 MW unit today $ 250,000.00 
Size priced kW 2,200.00 
Electricity to heat efficiently — 0.90 
Size needed kW 96,191.97 
Scaling factor — 0.9 
Cost of 86.5-MW unit today $ 7,491,771.63 
Cost of 86.5-MW unit 2005 $ 6,396,147.84 
Installation factor — 2.47 
Total 2005 installed cost $ 15,798,485.16 
    
Cost of base air blower $ 34,860.00 
Size priced kW 1,857.54 
Size needed kW 3,885.10 
Scaling factor — 0.6 
Cost of needed unit today $ 54,275.74 
Cost of needed unit 2005 $ 46,338.26 
Installation factor — 2.47 
Total 2005 installed cost $ 114,455.51 
Basecase cost $ 91,105.77 
Incremental increase $ 23,349.74 
      

Total capital $15,821,834.90 
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Table D.2 provides the capital cost estimate for completely replacing syngas recycle stream with 
electric heat. 

Table D.2. Cost Estimate 

Cost of 2.2 MW unit today $ 250,000.00 
Size priced kW 2,200.00 
Size needed kW 86,572.77 
Scaling factor — 0.9 
Cost of 86.5 MW unit 2009 $ 6,814,010.35 
Cost of 86.5 MW unit 2005 $ 5,817,504.82 
Installation factor — 2.47 

Total 2005 installed cost of air heater $ 14,369,236.91 
    

Cost of base air blower $ 34,860.00 
Size priced kW 1,857.54 
Size needed kW 5,827.64 
Scaling factor — 0.6 
Cost of needed unit today $ 69,224.61 
Cost of needed unit 2005 $ 59,100.96 
Installation factor — 2.47 
Total 2005 installed cost $ 145,979.36 
Basecase cost $ 91,105.98 
Incremental increase $ 54,873.38 
     

Inconel heat flux capacity W/cm^2 13.00 
Size needed kW 23,632.72 
Area needed cm^2 1,817,901.56 
Diameter of rod cm 1.59 
Length of rod needed m 3,639.45 
Cost of rod (2008) $/m 175.43 
Total material cost today $ 638,476.92 
Cost of heater factor — 2.50 
Total cost of heater today $ 1,596,192.31 
Cost of heater 2005 $ 1,362,759.37 
Installation factor — 2.47 
Total 2005 installed cost $ 3,366,015.65 
     

Total capital range for modification $17,790,125.93 
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Appendix E. Direct Gasifier Baseline Capital Costs 

 

`
N

um
be

r 
R

eq
ui

re
d

N
um

be
r 

Sp
ar

es
Eq

ui
pm

en
t N

am
e

U
ni

ts
Sc

al
in

g 
St

re
am

 F
lo

w
O

rig
in

al
 

St
re

am
 F

lo
w

Si
ze

 
R

at
io

 O
rig

in
al

 E
qu

ip
m

en
t 

C
os

t (
pe

r U
ni

t) 
B

as
e 

Ye
ar

 T
ot

al
 O

rig
in

al
 E

qu
ip

 
C

os
t (

R
eq

'd
 &

 S
pa

re
) 

in
 B

as
e 

Ye
ar

 
Sc

al
in

g 
Ex

po
ne

nt
 S

ca
le

d 
C

os
t i

n 
B

as
e 

Ye
ar

 
In

st
al

la
tio

n 
Fa

ct
or

 In
st

al
le

d 
C

os
t i

n 
B

as
e 

Ye
ar

 
 In

st
al

le
d 

C
os

t i
n 

20
05

$ 
Su

bt
ot

al
s

So
ur

ce
F
e
e
d

 P
re

p
2

Fe
ed

 P
re

p
w

et
 t

o
n
n
e/

h
r

8
3

6
5

1
.2

9
9
,8

4
0
,0

0
0

$
  
  
  

2
0
0
3

1
9
,6

8
0
,0

0
0

$
  
  

0
.7

7
2
3
,9

3
5
,5

1
1

$
  
 

1
2
3
,9

3
5
,5

1
1

$
  
  

2
7
,8

9
7
,9

5
0

$
  

2
7
,8

9
7
,9

5
0

$
  
  
  
  

b

G
a
si

fi
e
r

2
G

a
si

fi
er

d
ry

 t
o
n
n
e/

h
r

7
3

4
2

1
.7

6
6
,4

1
0
,0

0
0

$
  
  
  

2
0
0
3

1
2
,8

2
0
,0

0
0

$
  
  

0
.7

1
9
,0

2
6
,7

9
2

$
  
 

1
1
9
,0

2
6
,7

9
2

$
  
  

2
2
,1

7
6
,6

0
9

$
  

b
2

P
ri

m
a
ry

 C
yc

lo
n
e

a
ct

u
a
l 
m

3
/s

 g
a
s

1
0

6
9

0
.1

4
9
1
0
,0

0
0

$
  
  
  
  
 

2
0
0
3

1
,8

2
0
,0

0
0

$
  
  
  

0
.7

4
6
9
,0

3
3

$
  
  
  
 

1
4
6
9
,0

3
3

$
  
  
  
  

5
4
6
,6

8
0

$
  
  
  
 

2
2
,7

2
3
,2

8
9

$
  
  
  
  

b

A
S

U
1

A
S
U

to
n
n
e/

h
r 

p
u
re

 O
2

2
8

7
7

0
.3

6
2
2
,7

0
0
,0

0
0

$
  
  

2
0
0
3

2
2
,7

0
0
,0

0
0

$
  
  

0
.5

1
3
,6

8
0
,1

2
4

$
  
 

1
1
3
,6

8
0
,1

2
4

$
  
  

1
5
,9

4
4
,8

2
0

$
  

b
1

N
2
 C

o
m

p
re

ss
o
r

M
W

e 
co

n
su

m
ed

2
1
0

0
.2

0
4
,1

4
0
,0

0
0

$
  
  
  

2
0
0
3

4
,1

4
0
,0

0
0

$
  
  
  

0
.6

7
1
,4

0
2
,6

1
8

$
  
  

1
1
,4

0
2
,6

1
8

$
  
  
 

1
,6

3
4
,8

1
6

$
  
  

b
1

O
2
 C

o
m

p
re

ss
o
r

M
W

e 
co

n
su

m
ed

4
1
0

0
.4

5
5
,5

4
0
,0

0
0

$
  
  
  

2
0
0
3

5
,5

4
0
,0

0
0

$
  
  
  

0
.6

7
3
,2

2
5
,7

4
0

$
  
  

1
3
,2

2
5
,7

4
0

$
  
  
 

3
,7

5
9
,7

5
0

$
  
  

2
1
,3

3
9
,3

8
5

$
  
  
  
  

b

S
y
n

g
a
s 

C
le

a
n

in
g

1
S
yn

g
a
s 

C
o
o
le

r
kW

6
0
,0

0
0

7
7
,0

0
0

0
.7

8
2
5
,4

0
0
,0

0
0

$
  
  

2
0
0
3

2
5
,4

0
0
,0

0
0

$
  
  

0
.6

2
1
,8

6
9
,0

5
6

$
  
 

1
2
1
,8

6
9
,0

5
6

$
  
  

2
5
,4

8
9
,4

0
0

$
  

b
1

1
S
lu

d
g
e 

P
u
m

p
kg

/h
r

5
0
0

4
5
2

1
.1

1
3
,9

1
1

$
  
  
  
  
  
  

2
0
0
2

7
,8

2
2

$
  
  
  
  
  
  

0
.3

3
8
,0

8
4

$
  
  
  
  
  
 

2
.4

7
1
9
,9

6
8

$
  
  
  
  
  

2
3
,6

3
3

$
  
  
  
  
 

a

1
S
lu

d
g
e 

S
et

tl
in

g
 T

a
n
k

kg
/h

r
3
,7

0
6

3
,7

0
6

1
.0

0
1
1
,6

7
7

$
  
  
  
  
  

2
0
0
2

1
1
,6

7
7

$
  
  
  
  
  

0
.6

1
1
,6

7
7

$
  
  
  
  
 

2
.4

7
2
8
,8

4
2

$
  
  
  
  
  

3
4
,1

3
5

$
  
  
  
  
 

a

1
LO

-C
A
T
 O

xi
d
iz

er
 

V
es

se
l

kg
/h

r
3
6
0

2
3
4

1
.5

4
1
,0

0
0
,0

0
0

$
  
  
  

2
0
0
2

1
,0

0
0
,0

0
0

$
  
  
  

0
.6

5
1
,3

2
4
,6

3
1

$
  
  

2
.4

7
3
,2

7
1
,8

3
7

$
  
  
 

3
,8

7
2
,2

8
1

$
  
  

a
1

Z
n
O

 B
ed

 P
re

h
ea

te
r

kW
1
8
,1

8
9

1
5
,1

2
1

1
.2

0
7
1
,3

8
9

$
  
  
  
  
  

2
0
0
2

7
1
,3

8
9

$
  
  
  
  
  

0
.4

4
7
7
,4

3
5

$
  
  
  
  
 

2
.4

7
1
9
1
,2

6
3

$
  
  
  
  

2
2
6
,3

6
4

$
  
  
  
 

a

2
Z
n
O

 S
u
lf
u
r 

R
em

o
va

l 
B
ed

s
kg

/h
r

1
1
7
,0

8
8

8
3
,7

7
1

1
.4

0
3
7
,0

0
3

$
  
  
  
  
  

2
0
0
2

7
4
,0

0
6

$
  
  
  
  
  

0
.5

6
8
9
,2

6
9

$
  
  
  
  
 

2
.4

7
2
2
0
,4

9
4

$
  
  
  
  

2
6
0
,9

5
9

$
  
  
  
 

2
9
,9

0
6
,7

7
1

$
  
  
  
  

a

F
u

e
l 
S

y
n

th
e
si

s
1

H
ig

h
 T

em
p
er

a
tu

re
 

S
h
if
t 

R
ea

ct
o
r

kg
/h

r
1
6
1
,1

0
2

1
4
6
,4

5
0

1
.1

0
4
6
5
,9

0
7

$
  
  
  
  
 

2
0
0
2

4
6
5
,9

0
7

$
  
  
  
  
 

0
.5

6
4
9
1
,4

6
1

$
  
  
  
 

2
.4

7
1
,2

1
3
,9

0
8

$
  
  
 

1
,4

3
6
,6

8
3

$
  
  

a

1

LT
 S

h
if
t 

P
re

co
o
le

r/
B
FW

 
P
re

h
ea

te
r 

#
1

kW
1
7
,5

2
3

2
5
,0

3
5

0
.7

0
5
6
,0

8
9

$
  
  
  
  
  

2
0
0
2

5
6
,0

8
9

$
  
  
  
  
  

0
.6

4
5
,2

8
1

$
  
  
  
  
 

2
.4

7
1
1
1
,8

4
3

$
  
  
  
  

1
3
2
,3

6
9

$
  
  
  
 

a

1
Lo

w
 T

em
p
er

a
tu

re
 

S
h
if
t 

R
ea

ct
o
r

kg
/h

r
1
6
1
,1

0
2

1
4
6
,4

5
1

1
.1

0
3
2
3
,4

6
4

$
  
  
  
  
 

2
0
0
2

3
2
3
,4

6
4

$
  
  
  
  
 

0
.5

6
3
4
1
,2

0
4

$
  
  
  
 

2
.4

7
8
4
2
,7

7
4

$
  
  
  
  

9
9
7
,4

3
9

$
  
  
  
 

a

1

P
S
A
 

P
re

co
o
le

r/
D

ea
er

a
to

r 
W

a
te

r 
P
re

h
ea

te
r 

#
2

kW
9
,7

9
3

9
,2

0
7

1
.0

6
2
1
,0

8
9

$
  
  
  
  
  

2
0
0
2

2
1
,0

8
9

$
  
  
  
  
  

0
.6

2
1
,8

8
5

$
  
  
  
  
 

2
.4

7
5
4
,0

5
5

$
  
  
  
  
  

6
3
,9

7
5

$
  
  
  
  
 

a

1
P
S
A
 A

ir
-c

o
o
le

d
 

P
re

co
o
le

r
kW

2
5
,7

8
5

3
1
,2

8
3

0
.8

2
3
8
8
,0

6
4

$
  
  
  
  
 

2
0
0
2

3
8
8
,0

6
4

$
  
  
  
  
 

0
.6

3
4
5
,5

7
2

$
  
  
  
 

2
.4

7
8
5
3
,5

6
3

$
  
  
  
  

1
,0

1
0
,2

0
7

$
  
  

a

1
P
re

-P
S
A
 K

n
o
ck

-o
u
t 

#
1

kg
/h

r
1
6
1
,1

0
2

1
4
6
,4

5
1

1
.1

0
1
2
9
,9

7
9

$
  
  
  
  
 

2
0
0
2

1
2
9
,9

7
9

$
  
  
  
  
 

0
.6

1
3
7
,6

3
2

$
  
  
  
 

2
.4

7
3
3
9
,9

5
0

$
  
  
  
  

4
0
2
,3

3
7

$
  
  
  
 

a

1
P
re

-P
S
A
 K

n
o
ck

-o
u
t 

#
2

kg
/h

r
1
3
5
,9

4
0

1
1
1
,5

9
1

1
.2

2
5
5
,2

9
1

$
  
  
  
  
  

2
0
0
2

5
5
,2

9
1

$
  
  
  
  
  

0
.6

6
2
,2

4
2

$
  
  
  
  
 

2
.4

7
1
5
3
,7

3
8

$
  
  
  
  

1
8
1
,9

5
2

$
  
  
  
 

a

1
P
re

ss
u
re

 S
w

in
g
 

A
d
so

rp
ti
o
n
 U

n
it

kg
/h

r
7
,1

2
0

6
,9

5
0

1
.0

2
4
,8

5
5
,4

7
1

$
  
  
  

2
0
0
2

4
,8

5
5
,4

7
1

$
  
  
  

0
.6

4
,9

2
6
,3

3
4

$
  
  

2
.4

7
1
2
,1

6
8
,0

4
5

$
  
  

1
4
,4

0
1
,1

0
9

$
  

1
8
,6

2
6
,0

7
2

$
  
  
  
  

a

S
te

a
m

 C
y
cl

e
1

B
a
se

d
 o

n
 I

n
st

a
lle

d
 

C
o
st

 o
f 
4
7
4
.3

4
 

$
/k

W
h

kW
h

3
6
,3

8
0

2
9
,9

7
3

1
.2

1
1
4
,2

1
7
,4

0
0

$
  
  

2
0
0
2

1
4
,2

1
7
,4

0
0

$
  
  

1
1
7
,2

5
6
,4

8
9

$
  
 

1
1
7
,2

5
6
,4

8
9

$
  
  

2
0
,4

2
3
,3

7
8

$
  

2
0
,4

2
3
,3

7
8

$
  
  
  
  

a

1
4
0
,9

1
6
,8

4
4

$
  
  
  

2
,1

1
3
,7

5
3

$
  
  
  
  
  

a
6
,3

6
8
,9

0
0

$
  
  
  
  
  

a
1

4
9

,3
9

9
,4

9
7

$
  
  

S
o
u
rc

es
: 

a
S
p
a
th

 e
t.

 a
l.
 “

B
io

m
a
ss

 t
o
 H

yd
ro

g
en

 P
ro

d
u
ct

io
n
 D

et
a
ile

d
 D

es
ig

n
 a

n
d
 E

co
n
o
m

ic
s 

U
ti
liz

in
g
 t

h
e 

B
a
tt

el
le

 C
o
lu

m
b
u
s 

La
b
o
ra

to
ry

 I
n
d
ir

ec
tl
y-

H
ea

te
d
 G

a
si

fi
er

”.
 N

R
E
L/

T
P
-5

1
0
-3

7
4
0
8
. 

M
a
y 

2
0
0
5
.

b
Ji

n
, 

H
. 

et
 a

l.
 “

P
er

fo
rm

a
n
ce

 a
n
d
 c

o
st

 a
n
a
ly

si
s 

o
f 
fu

tu
re

, 
co

m
m

er
ci

a
lly

 m
a
tu

re
 g

a
si

fi
ca

ti
o
n
-b

a
se

d
 e

le
ct

ri
c 

p
o
w

er
 g

en
er

a
ti
o
n
 f
ro

m
 s

w
it
ch

g
ra

ss
”.

 B
io

fp
r 

V
o
l 
3
 p

p
 1

4
2
-1

7
3
. 

2
0
0
9
.

S
u
b
to

ta
l

C
o
n
ti
n
g
en

cy
 (

1
.5

%
)

S
tr

u
ct

u
re

s
T
o
ta

l



 

67 

Appendix F. Direct Gasifier Hybrid System Capital Costs 
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Appendix G. Electricity Profiles 

Northeast ISO 
 

Figure G.1. Northeast ISO price duration curve 

High average cost because of reliance on natural-gas turbines 
Hourly day-ahead market data received directly from Northeast ISO Website 
Average price of electricity is $0.0655/kWh 

Midwest ISO 
 

Figure G.2. Midwest ISO price duration curve 

Low cost of electricity because of large amount of coal on the grid 
Hourly day ahead market data received from MISO directly 
Average price of electricity of $0.0432/kWh 
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Northwest Interface 
 

Figure G.3. Northwest Interface price duration curve 

Low cost of electricity because of large amount of hydro on the grid 
No RTO/ISO in the area, so the data from the northwest interface is used instead 
Hourly load lambda data received from DOE records 
Average cost of electricity of $0.431/kWh 
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Appendix H. Aspen Flow Sheet 
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